АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Особенности проведения местного и распространяющегося возбуждения

Локальный ответ (местное возбуждение)

распространяется по нервным волокнам с затуханием (с декрементом), т.е. амплитуда локального ответа быстро падает с увеличением расстояния от места его возникновения;

вследствие затухания локальный ответ распространяется на небольшие расстояния (не более 2 см);

местное возбуждение распространяется пассивно, без затрат энергии клетки;

механизм распространения местного возбуждения аналогичен распространению электрического тока в проводниках; такой способ распространения возбуждения называют электротоническим.

Потенциал действия (распространяющееся возбуждение)

распространяется по нервным волокнам без затухания, амплитуда потенциала действия одинакова на любом расстоянии от места его возникновения;

расстояние, на которое распространяется потенциал действия, ограничено только длиной нервного волокна;

распространение потенциала действия – активный процесс, в ходе которого изменяется состояние ионных каналов волокна, энергия АТФ требуется для восстановления трансмембранных ионных градиентов;

механизм проведения потенциала действия более сложен, чем механизм распространения местного возбуждения.

Законы проведения возбуждения по нервным волокнам

Закон анатомической и физиологической непрерывности - возбуждение может распространяться по нервному волокну только в случае его морфологической и функциональной целостности.

Закон двустороннего проведения возбуждения – возбуждение, возникающее в одном участке нерва, распространяется в обе стороны от места своего возникновения. В организме возбуждение всегда распространяется по аксону от тела клетки (ортодромно).

Закон изолированного проведения – возбуждение, распространяющееся по волокну, входящему в состав нерва, не передается на соседние нервные волокна.

Аксональный транспорт (аксоток) – это перемещение веществ от тела нейрона в отростки (антероградный аксоток) и в обратном направлении (ретроградный аксоток). Различают медленный аксональный ток веществ (1-5мм в сутки) и быстрый (до 1-5м в сутки). Обе транспортные системы присутствуют как в аксонах, так и в дендритах. Аксональный транспорт обеспечивает единство нейрона. Он создаёт постоянную связь между телом нейрона (трофическим центром) и отростками. Основные синтетические процессы идут в перикарионе. Здесь сосредоточены необходимые для этого органеллы. В отростках синтетические процессы протекают слабо.

Антероградная быстрая система транспортирует к нервным окончаниям белки и органеллы, необходимые для синаптических функций (митохондрии, фрагменты мембран, пузырьки, белки-ферменты, участвующие в обмене нейромедиаторов, а также предшественники нейромедиаторов). Ретроградная система возвращает в перикарион использованные и поврежденные мембраны и белки для деградации в лизосомах и обновления, приносит информацию о состоянии периферии, факторы роста нервов. Медленный транспорт – это антероградная система, проводящая белки и другие вещества для обновления аксоплазмы зрелых нейронов и обеспечения роста отростков при их развитии и регенерации.

Ретроградный транспорт может иметь значение в патологии. За счёт него нейротропные вирусы (герпеса, бешенства, полиомиелита) могут перемещаться с периферии в центральную нервную систему.

 

 

Мионевральный синапс обладает следующими основными свойствами.

1. Синапс проводит возбуждение только в одном направлении – в направлении от пресинаптической мембраны к постсинаптической.

2. В синапсе имеет место синаптическая задержка возбуждения, т. е. скорость проведения возбуждения по синапсу значительно меньше, чем по нервному волокну. Это связано с определенной продолжительностью времени, необходимого для выделения медиатора и взаимодействия его с рецепторами.

3. В синапсе отмечается облегчение проведения каждого последующего возбуждения, что, по всей вероятности, связано с накоплением медиатора в синаптической щели.

4. При длительном возбуждении синапса в нем может наблюдаться снижение чувствительности рецепторов к медиатору, обусловленное закрытием части натриевых каналов, за счет включения системы инактивации.

5. В синапсах быстро развивается процесс утомления, связанный с быстрым метаболическим истощением запасов медиатора в везикулах пресинаптических утолщений.

Миорелаксанты блокируют передачу импульса в нервно-мышечном соединении путем связывания с никотиновыми холинергическими рецепторами скелетных мышц. В зависимости от времени начала, продолжительности действия и нежелательных эффектов выделяют 2 типа блокады: • деполяризующая; • антидеполяризующая. Начало и время действия антидеполяризующих миорелаксантов, как правило, заметно больше, поэтому они лучше подходят для миорелаксации, чем для интубации. Оба типа миорелаксантов (сукцинилхолин — деполяризующий, d-тубокурарин — антидеполяризующий) изначально использовали в качестве компонентов общей анестезии, однако сейчас появились новые антидеполяризующие миорелаксанты: • аминостероиды: ранкуроний, векуроний, рокуроний; • бензилизохинолины: атракурий, цисатракурий, миватракурий. Открытие первого антидеполяризующего препарата тубокурарина связано с изучением свойств кураре — смеси алкалоидов, в которую южноамериканские индейцы обмакивали стрелы, чтобы сделать их ядовитыми. Клод Бернар в серии классических экспериментов (1856 г.) показал, что блокада происходила на уровне нервного окончания, а не нерва или мышцы. Клинически значимым алкалоидом кураре является тубокурарин, который, будучи четвертичным амином, не проходит через гематоэнцефалический барьер.


Дата добавления: 2015-07-17 | Просмотры: 759 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)