АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Ответ 1

Прочитайте:
  1. A. принцип соответствия
  2. I. Раскройте скобки, употребляя эквиваленты модальных глаголов соответствующем времени.
  3. I. Раскройте скобки, употребляя эквиваленты модальных глаголов соответствующем времени.
  4. II Задания для обучения студентов по теме в соответствии с указанным уровнем усвоения
  5. II тип. Для каждого вопроса, пронумерованного цифрой, подберите один или несколько соответствующих ответов (один и тот же ответ может быть использован один или несколько раз).
  6. II. Требования к знаниям, умениям (в соответствии с ГОС).
  7. V. ВЫБЕРИТЕ В ТЕСТАХ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ
  8. А. Упрощенная схема иммунного ответа
  9. АНОМАЛИИ ИММУННОГО ОТВЕТА
  10. Антителообразование: первичный и вторичный иммунный ответ.

Основные клетки иммунной системы – это Лейкоциты. Они являются главными элементами врожденного и приобретенного иммунитета. Все лейкоциты делятся на множество подгрупп, каждая их которых отвечает за определенные действия иммунитета. Клетками врожденного иммунитета являются фагоциты, естественные киллеры, базофилы, тучные клетки и эозинофилы. Работа этих клеток заключается в том, что они определяют и уничтожают вредоносных агентов. Они «заглатывают» и переваривают чужаков, а если это крупные чужеродные тела (крупные опухолевые клетки или паразиты), то выделяют вещество, способное их уничтожить.

Фагоциты

Фагоциты занимаются тем, что путешествуют по организму, разыскивая чужаков, однако они могут и призываться в конкретное место организма. Когда фагоцит заглатывает вредный организм, последний попадает в ловушку и погибает в процессе пищеварения или дыхательного взрыва. Уничтожив патогенный организм, фагоциты передают информацию о нем лимфоцитам, которые, в свою очередь, вырабатывают специфический антиген. Этот антиген является своего рода «зеркалом» патогенна, по которому в дальнейшем иммунная система (ИС) способна быстро распознать его и вовремя нейтрализовать. Фагоцитоз – это один из самых древних способов защиты организма, так как его обнаружили и у позвоночных, и у беспозвоночных. Необходимое влияние нейтрофилов, макрофагов, моноцитов и дендритных клеток можно отнести к фагоцитозу.

Не стоит забывать, что Нейтрофилы и Макрофаги – это Фагоциты, перемещающиеся по организму и разыскивающие чужаков, которые проникли в организм через первичные барьеры. Первые клетки иммунной системы, реагирующие на инфекцию – это нейтрофилы. Они немедленно устремляются к месту воспаления, как бы «выделяя» его. Макрофаги же – клетки многоцелевые, они располагаются в тканях и производят белки системы комплемента, важные ферменты и другие элементы, необходимые для работы ИС. Также макрофаги избавляют наш организм от старых и умирающих клеток.

Нельзя оставить без внимания и дендритные клетки – это фагоциты, находящиеся в тканях, которые первыми встречают вирусы и бактерии, наносящие вред. Они размещены не только в носу и коже, но и в кишечнике и легких. Внешне данные клетки очень похожи на дендриты нейронов, так как у них огромное количество отростков, однако к нервной системе они не имеют никакого отношения. Дендритная клетка является своего рода связным между приобретенным и врожденным иммунитетом, так как предоставляет Т-клеткам необходимые антигены.

Лимфоциты

Основные функции приобретенного иммунитета выполняют лимфоциты, являющиеся подвидом лейкоцитов. Лимфоциты распознают вредителей в крови, тканях, внутри и снаружи клеток. Лимфоциты делятся на B-клетки и T-клетки и образуются они в костном мозге, а T-лимфоциты еще и в тимусе. B-клетки занимаются тем, что производят антитела (клетки, способные распознать и указать иммунной системе на появление вредителя), а T-клетки являются основой специфического иммунного ответа.

Развиваясь, лимфоциты проходят своего рода естественный отбор – в организме остаются только необходимые для его защиты клетки, и те, которые не угрожают ему.

B- и T-клетки имеют на поверхности специальные молекулы, способные распознавать вредоносных агентов. Это рецепторные молекулы – своеобразное «зеркало» какой-либо части чужака, с помощью которого такие молекулы присоединяются к нему. Причем «зеркала» и части чужаков составляют единственную и уникальную пару.

T-лимфоциты занимаются широким спектром работ в нашем организме. Основная задача – организация работы приобретенного иммунитета. Делают они это посредством уникальных белков – цитокинов. Также Т-лимфоциты подталкивают фагоциты, чтобы они, в свою очередь, активнее уничтожали вредоносные микроорганизмы. Этой работой занимается особый тип Т-лимфоцитов – Т-хелперы. А вот уничтожением зараженных клеток организма занимается другой тип – Т-киллеры.

T-хелперы

Т-хелперы занимаются регулированием работ врожденного и приобретенного иммунитетов. Организовывают тип иммунного ответа на определенный вид чужеродного агрессора. Т-хелперы не уничтожают инфицированные клетки или возбудители болезни. Они указывают другим клеткам, что и когда следует делать, управляя, таким образом, иммунным ответом.

T-киллеры

Основная задача Т-киллеров – это уничтожение клеток организма, зараженных вирусами или какими-либо патогенными факторами. Также Т-киллеры разрушают поврежденные или плохо и неверно функционирующие клетки, к примеру, опухолевые.

Рассмотренные нами виды представляют собой основные клетки иммунной системы, есть еще второстепенные и вспомогательные.

Всем клеткам необходимо правильное питание и развитие, для того чтобы наша иммунная система могла поддерживать работоспособность нашего организма на должном уровне.

 

Органы входящие в иммунную систему человека: лимфатические железы (узлы), миндалины, вилочковая железа (тимус), костный мозг, селезёнка и лимфоидные образования кишки (Пейеровые бляшки). Главную роль играет сложная система циркуляции, которая состоит из лимфатических протоков соединяющих лимфатические узлы.

 

Лимфатический узел – это образование из мягких тканей, имеет овальную форму и размером 0,2 – 1,0 см, в котором содержится большое количество лимфоцитов.

 

Миндалины – это маленькие скопления лимфоидной ткани, располагаются с двух сторон глотки. Селезёнка – внешне очень похож на большой лимфатический узел. Функции у селезёнки разнообразные, это и фильтр для крови, хранилище для клеток крови, продукции лимфоцитов. Именно в селезёнке старые и неполноценные клетки крови разрушаются. Располагается селезёнка в районе живота под левым подреберьем около желудка.

 

Вилочковая железа (тимус) - располагается данный орган за грудиной. Лимфоидные клетки в тимусе размножаются и «учатся». У детей и людей молодого возраста тимус активен, чем человек старше, тем тимус становится менее активный и уменьшается в размере.

 

Костный мозг – это мягкая губчатая ткань, расположенная внутри трубчатых и плоских костей. Главная задача костного мозга это продукция клеток крови: лейкоцитов, эритроцитов, тромбоцитов.

 

Пейеровы бляшки – Это сосредоточение лимфоидной ткани в стенке кишечника. Главную роль играет система циркуляции, состоящая из лимфатических протоков, которые соединяют лимфатические узлы, и транспортируют лимфатическую жидкость.

 

Лимфатическая жидкость (лимфа) – это жидкость без цвета, протекающая по лимфатическим сосудам, в ней содержится много лимфоцитов – белых кровяных телец, участвующих в защите организма от болезней.

 

Лимфоциты – это образно говоря «солдаты» иммунной системы, именно они отвечают за уничтожение чужеродных организмов или больных клеток (инфицированных, опухолевых и т.д.). Самые важные виды лимфоцитов (В-лимфоциты и Т-лимфоциты) они работают вместе с остальными иммунными клетками и не позволяют вторгнуться в организм инородных субстанций (инфекций, чужеродных белков и т.д.). На первом этапе организм «учит» Т- лимфоциты отличать посторонние белки от нормальных (своих) белков организма. Этот процесс обучения проводится в вилочковой железе (тимусе) в детском возрасте, так как в этом возрасте тимус наиболее активен. Далее человек достигает подросткового возраста, и тимус уменьшается в размере и теряет свою активность.

 

Интересный факт, что при многих аутоиммунных заболеваниях, и при рассеянном склерозе так же, иммунная система не узнаёт здоровые клетки и ткани организма, а относится к ним как к чужеродным, начинает их атаковать и разрушать их.

В нашем организме несколько систем жизнеобеспечения. Одной из таких является иммунная система (ИС). Без нее организм просто не может существовать. И это становится понятным когда рассматриваешь фукции иммунной системы. Их всего три, но их наша ИС выполняет с момента нашего рождения и до самой смерти. Итак, функции иммунной системы:

1. Идентификация чуродного тела, вторгшегося в наш организм.

2. Уничтожение этого чужеродного тела (вируса или к.-л. другой инфекции).

3. Выведение из нашего тела не нужных элементов, которые поступили из вне или образовались в нем.

Иммунные нарушения рассматривает иммунология. Вообще исследования заболеваний связанных с нашей ИС начались еще в 50-е годы прошлого века. Налачем считается установление причины гнойного заболевания у ребенка американским врачем Брутоном.

Сегодня иммунология имеет несколько основных разделов, которые изучают:

-иммунные нарушения (заболевания);

-состояния иммнодефицита;

-функции иммунной системы в паталогии и норме;

-функции иммунной системы при самых разных болезнях.

А так же разрабатывает:

-методы и способы корректировки функционирования ИС;

-иммунотропные препараты.

Иммунные нарушения бывают очень разнообразными, но принято их разделять на 4 группы различных заболеваний:

1. Опухоли ИС.

2. Инфекции ИС.

3. Болезни, связанные с гиперактивным ответом ИС (аутоиммунные заболевания).

4. Заболевания, связанные с недостаточно активным ответом ИС (иммунодефицитные болезни).

Функции иммунной системы выполняют Т- и В-лимфоцитами, макрофагами, моноцитами, нейтрофилами, тучными и эпителиальными клетками, эозинофилами, фибробластами. И еще важнейшие функции иммунной системы выполняют иммуноглобулины, антигенам, цитокинам, рецепторам. И вообще наша иммунная система характеризуется многокомпонентностью, но функционирует как единое целое.

ИС человека может характеризоваться наличием врожденных дефектов (так называемые первичные иммунодефициты) или приобретенные с течением времени под влиянием самых разных обстоятельств, например, вредного воздействия окружающей среды, стрессовых ситуаций и т. д. Иммунные нарушения могут носить транзиторный характер либо приобретать хроническое течение в виде синдромов иммунологической недостаточности.

В настоящее время перед исследователями стоит вопрос корректировки нашей иммунной системы при нарушении ее работы. И вот десятилетия долгих исследований и испытаний завершились настоящим прорывом - создан препарат Трансфер фактор. Это, действительно, насоящий прорыв в области здравоохранения. Препарат, который не дает совершенно никаких побочных эффектов, препарат, который состоит полностью, на 100% из натуральных компонентов, препарат, который регулирует нашу ИС: при недостаточном иммунном ответе он усиливает его, а при гиперактивном - подавляет. И это все - Трансфер фактор.

Антитела (иммуноглобулины, ИГ, Ig) — особый класс гликопротеинов, присутствующих на поверхности B-лимфоцитов в виде мембраносвязанных рецепторов и в сыворотке крови и тканевой жидкости в виде растворимых молекул, и обладающих способностью очень избирательно связываться с конкретными видами молекул, которые в связи с этим называют антигенами. Антитела являются важнейшим фактором специфического гуморального иммунитета. Антитела используются иммунной системой для идентификации и нейтрализации чужеродных объектов — например, бактерий и вирусов. Антитела выполняют две функции: антиген-связывающую и эффекторную (вызывают тот или иной иммунный ответ, например, запускают классическую схему активации комплемента).

Антитела синтезируются плазматическими клетками, которыми становятся некоторые В-лимфоциты, в ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом — характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

Антитела состоят из двух лёгких цепей и двух тяжелых цепей. У млекопитающих выделяют пять классов антител (иммуноглобулинов) — IgG, IgA, IgM, IgD, IgE, различающихся между собой по строению и аминокислотному составу тяжёлых цепей и по выполняемым эффекторным функциям.

Функции антител

Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа

распознает и связывает антиген, а затем

усиливает киллинг и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.

Одна область молекулы антител (Fab) определяет её антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

IgG является основным иммуноглобулином сыворотки здорового человека (составляет 70-75 % всей фракции иммуноглобулинов), наиболее активен во вторичном иммунном ответе и антитоксическом иммунитете. Благодаря малым размерам (коэффициент седиментации 7S, молекулярная масса 146 кДа) является единственной фракцией иммуноглобулинов, способной к транспорту через плацентарный барьер и тем самым обеспечивающей иммунитет плода и новорожденного. В составе IgG 2-3 % углеводов; два антигенсвязывающих Fab-фрагмента и один FC-фрагмент. Fab-фрагмент (50-52 кДа) состоит из целой L-цепи и N-концевой половины H-цепи, соединённых между собой дисульфидной связью, тогда как FC-фрагмент (48 кДа) образован C-концевыми половинами H-цепей. Всего в молекуле IgG 12 доменов (участки, сформированные из β-структуры и α-спиралей полипептидных цепей Ig в виде неупорядоченных образований, связанных между собой дисульфидными мостиками аминокислотных остатков внутри каждой цепи): по 4 на тяжёлых и по 2 на лёгких цепях.

IgM представляют собой пентамер основной четырёхцепочечной единицы, содержащей две μ-цепи. При этом каждый пентамер содержит одну копию полипептида с J-цепью (20 кДа), который синтезируется антителообразующей клеткой и ковалентно связывается между двумя соседними FC-фрагментами иммуноглобулина. Появляются при первичном иммунном ответе B-лимфоцитами на неизвестный антиген, составляют до 10 % фракции иммуноглобулинов. Являются наиболее крупными иммуноглобулинами (970 кДа). Содержат 10-12 % углеводов. Образование IgM происходит ещё в пре-B-лимфоцитах, в которых первично синтезируются из μ-цепи; синтез лёгких цепей в пре-B-клетках обеспечивает их связывание с μ-цепями, в результате образуются функционально активные IgM, которые встраиваются в поверхностные структуры плазматической мембраны, выполняя роль антиген распознающего рецептора; с этого момента клетки пре-B-лимфоцитов становятся зрелыми и способны участвовать в иммунном ответе.

IgA сывороточный IgA составляет 15-20 % всей фракции иммуноглобулинов, при этом 80 % молекул IgA представлено в мономерной форме у человека. Основной функцией IgA является защита слизистых оболочек дыхательных, мочеполовых путей и желудочно-кишечного тракта от инфекций. Секреторный IgA представлен в димерной форме в комплексе секреторным компонентом, содержится в серозно-слизистых секретах (например в слюне, слезах, молозиве, молоке, отделяемом слизистой оболочки мочеполовой и респираторной системы). Содержит 10-12 % углеводов, молекулярная масса 500 кДа.

IgD составляет менее одного процента фракции иммуноглобулинов плазмы, содержится в основном на мембране некоторых В-лимфоцитов. Функции до конца не выяснены, предположительно является антигенным рецептором с высоким содержанием связанных с белком углеводов для В-лимфоцитов, ещё не представлявшихся антигену. Молекулярная масса 175 кДа.

IgE в свободном виде в плазме почти отсутствует. Способен осуществлять защитную функцию в организме от действия паразитарных инфекций, обуславливает многие аллергические реакции. Механизм действия IgE проявляется через связывание с высоким сродством (10−10М) с поверхностными структурами базофилов и тучных клеток, с последующим присоединением к ним антигена, вызывая дегрануляцию и выброс в кровь высоко активных аминов (гистамина и серотонина — медиаторов воспаления). 200 кДа.

 

 

2 ответ

Иммунитет человека

Иммунитет – сейчас очень популярное понятие, и все, что с ним связано крайне интересно нынешнему поколению. Правда, не все знают, где именно располагается этот загадочный «защитник» организма, от которого зависит так много. Кто-то думает, что иммунитет организма находится в желудке, иные предполагают, что он пребывает в крови. В рекламных роликах нам предлагают повысить иммунитет организма с помощью таблеток, кефиров, разнообразных витаминов или какими-либо другими способами. Давайте все же определимся, что это за стражник такой, и где же он находится.

 

Иммунитет – это уникальная способность организма самостоятельно защищаться от болезнетворных бактерий и вирусов, а так же уничтожать собственные мутировавшие клетки. Иммунная система представляет собой целый мир в нашем организме, образованный различными органами, тканями и клетками, объединенными одной целью – обнаружить и уничтожить внешние и внутренние потенциальные угрозы в нашем организме. Мало кто знает, но 10% всех наших клеток – это клетки иммунитета.

Впервые понятие «иммунитет» было предложено И.И. Мечниковым и Пастером. Изначально считалось, что иммунитет человека – это невосприимчивость организма к каким-либо инфекционным заболеваниям. Но сейчас давно уже известно, что иммунитет не только способен защищать весь организм от болезнетворных микробов, но и от любых генетически чужых клеток. Ими являются собственные опухолевые клетки организма, паразиты и др.

Виды иммунитета

vidy-immuniteta-cheloveka.jpgИммунитет – это сложная система, включающая в себя разные органы и множество видов клеток. Защита организма осуществляется на многих уровнях и при условии правильной ее организации, то есть при условии здоровой и крепкой иммунной системы, человеку не страшны никакие болезни. К сожалению, на сегодняшний день абсолютный иммунитет существует лишь в теории, а на практике любому человеку требуется тот или иной вид иммунокоррекции. Чтобы знать алгоритм своих действий в разных случаях, нужно хорошо понимать структуру и виды иммунитета.

Итак, иммунитет организма условно делится на два типа: неспецифический и специфический.

1. Неспецифический иммунитет, он же врожденный – это та защита, что передается нам с генами родителей. На этот тип иммунитета приходится более 60% всей защиты нашего организма. Его формирование начинается в середине первого триместра беременности с фагоцитов. Фагоциты – это клетки, способные поглощать чужеродные организмы. Создаются они из стволовых клеток, а в селезенке проходят «инструктаж», благодаря которому потом могут отличать своих от чужих. Другие клетки иммунной системы, включая и защитные, и информационные формируются в селезенке. Все они имеют белковую природу, кроме тех углеводных соединений, которые отвечают за распознавание «вражеских» клеток.

Неспецифический иммунитет действует просто и эффективно: обнаружив антиген (врага), он атакует его и уничтожает. Важной особенностью и миссией неспецифического иммунитета является его способность бороться с раковыми клетками, что означает невозможность изобретения вакцины против онкозаболеваний, поскольку вакцины отвечают за другой тип иммунитета.

2. Специфический иммунитет начинает формироваться в то же время, что и неспецифический, из того же материала – стволовых клеток. Однако позже их дороги расходятся: клетки неспецифического иммунитета отправляются в селезенку, а специфического – в вилочковую железу, или по-другому тимус. Там они становятся антителами к разнообразным заболеваниям. Чем с большим количеством микроорганизмов встречается иммунная система, тем большее количество антител имеется в ее арсенале для борьбы с разными болезнями и тем крепче становится специфический иммунитет. По этой причине дети, выросшие в условиях стерильности, болеют чаще, хоть это и звучит парадоксально

 

3 ответ

Плацента – это орган, который обеспечивает взаимосвязь плода с материнским организмом, его питание, дыхательную и выделительную функции. Плацентарный барьер надежно защищает плод от чужеродных для него материнских антигенов. Эта барьерная функция проявляется только в физиологических условиях. Но при различных заболеваниях, травмах, отравлениях, при приеме наркотиков и алкоголя, плацента становится проницаемой для веществ, которые в норме через нее не проходят.

Организм матери и плода устроены таким образом, чтобы избежать взаимной иммунной агрессии. Таким образом, организм беременной женщины в связи с большим количеством чужеродных антигенов плода владеет временной иммунологической толерантностью (способностью не предоставлять иммунный ответ). Эта защитная реакция относится только к беременной женщине. Но материнские антитела класса Ig E могут проникать через плаценту в организм плода и наносить ему вред. В том числе, проходить через плаценту могут вирусы и бактерии, которые повреждают плод. Иммунная система беременной женщине в случаи несовместимости с плодом по главным антигенам эритроцитов, реагирует образованием антител, которые разрушают эритроциты плода. В результате развивается гемолитическая анемия, могут повреждаться органы и системы плода, что не совместимо с его дальнейшим ростом и развитием.

Образование антител класса Ig М начинается внутриутробно, но их уровень у новорожденных маленький. Более высокая их концентрация указывает на внутриутробную инфекцию плода.

Ig А в организме плода образуются также в малых количествах. Но их много в молоке матери. В пищеварительном тракте ребенка они способствуют укреплению местного иммунитета и формированию собственной защитной микробной флоры, которая предотвращает размножение возбудителей кишечных инфекций. Поэтому так важно кормление грудным молоком ребенка.

На момент рождения ребенка, его клеточный иммунитет недостаточно сформирован и некоторые вирусы (краснухи, цитомегаловирус, вирус простого герпеса) могут оседать в клетках новорожденного, что свидетельствует о недостаточном иммунном ответе на некоторые вирусы.

Активная продукция Ig А начинается в 2-4 недели. Недостаточное количество секреторного Ig А на слизистых оболочках есть одной из причин склонности детей грудного возраста к вирусным заболеваниям.

Образование Ig G начинается в возрасте 1 месяца, достигая достаточного уровня только к концу 1 года жизни. В результате расщепления материнских Ig G, в которых содержатся главные защитные антитела. Уровень специфических антител у ребенка в возрасте 3-6 месяцев – самый низкий. Развивается физиологическая гипоиммуноглобулинемия.

А к концу 1 года жизни уровень Ig А, Ig М и Ig G такой же, как и у взрослых.

Первый критический период приходится на возраст до 28 дней жизни, второй – до 4–6 мес., третий – до 2 лет, четвертый – до 4–6 лет, пятый – до 12–15 лет.

Первый критический период характеризуется тем, что иммунная система ребенка подавлена. Имму­нитет имеет пассивный характер и обеспечивается материнскими АТ. В то же время собственная им­мунная система находится в состоянии супрессии. Система фагоцитоза не развита. Новорожденный проявляет слабую резистентность к условно–пато­ген­ной, гноеродной, грамот­рицательной флоре. Харак­тер­на склонность к генерализации микробно–воспали­тель­ных процессов, к септическим состояниям. Очень высока чувствительность ре­бен­ка к вирусным инфекциям, против которых он не за­щи­щен материнскими антителами. Примерно на 5–е сут­ки жизни осуществляется первый перекрест в фор­муле белой крови и устанавливается абсолютное и относительное преобладание лимфоцитов.

Второй критический период обусловлен разрушением материнских антител. Первич­ный иммунный ответ на проникновение инфекции развивается за счет синтеза иммуноглобулинов класса М и не оставляет иммунологической памяти. Такой тип иммунного от­вета наступает также при вакцинации против инфекционных заболеваний, и только ревакцинация формирует вторичный иммунный ответ с продукцией антител класса IgG. Недостаточность системы местного иммунитета про­является повторными ОРВИ, кишечными инфекциями и дисбактериозом, кожными заболеваниями. Дети отличаются очень высокой чувствительностью к респираторному синцитиальному вирусу, ротавирусу, вирусам пара­гриппа, аденовирусам (высокая подверженность воспалительным процессам органов дыхания, кишечным инфекциям). Атипично протекают коклюш, корь, не оставляя иммунитета. Дебюти­руют многие наследственные болез­ни, включая первичные иммунодефициты. Резко нарастает частота пищевой аллергии, маскируя у детей атопические проявления.

Третий критический период. Значительно расширяются контакты ребенка с внешним миром (свобода передвижения, социализация). Сохраняется первичный иммунный ответ (синтез IgM) на многие антигены. Вместе с тем, начинается переключение иммунных реакций на образование антител класса IgG. Система местного иммунитета остается незрелой. Поэтому дети остаются чувствительными к вирусным и микробным инфекциям. В этот период впервые проявляются многие первичные иммунодефициты, аутоиммунные и иммунокомплексные болезни (гломерулонефрит, васкулиты и др.). Дети склонны к повторным вирусным и микробно–воспалительным заболеваниям органов дыхания, ЛОР–ор­ганов. Становятся более четкими признаки иммунодиатезов (атопический, лимфатический, аутоаллергический). Проявления пищевой аллергии постепенно ослабевают. По иммунобиологическим характеристикам значительная часть детей второго года жизни не готова к условиям пребывания в детском коллективе.

Четвертый критический период отличается тем, что средняя концентрация IgG и IgM в крови соответствует уровню взрослых, однако уровень IgA в крови еще не достигает окончательных значений. Содержание IgE в плазме крови отличается макси­мальным уровнем в сравнении с другими возрастными периодами, что отчасти обусловлено довольно частыми в это период паразитарными инфекциями – лямблиозом, гельминто­зами. При этом уровень сывороточного IgА остается ниже нормы. Это нередко рассматривается как фактор риска формирования многих хронических заболеваний полигенной при­роды. Может нарастать аллергическая патология.

 

Пятый критический период происходит на фоне бурной гормональной перестройки (приходится на 12–13 лет у девочек и 14–15 лет – у мальчиков). На фоне повышения секреции половых стероидов уменьшается объем лимфоидных органов. Секреция половых гормонов ведет к подавлению клеточного звена иммунитета. Содержание IgE в крови снижается. Окончательно формируются сильный и слабый типы иммунного ответа. Нарастает воздействие экзогенных факторов (куре­ние, ксенобиотики и др.) на иммунную систему. Повышается чувствительность к микобактериям. После некоторого спада отмечается подъем частоты хронических воспалитель­ных, а также аутоиммунных и лимфопролиферативных заболеваний. Тяжесть атопических болезней (бронхиальная астма и др.) у многих детей временно ослабевает, но они могут рецидивировать в молодом возрасте.

 

4 ответ

Гру́ппа кро́ви — описание индивидуальных антигенных характеристик эритроцитов, определяемое с помощью методов идентификации специфических групп углеводов и белков, включённых в мембраны эритроцитов животных.

У человека открыто несколько систем антигенов, основные из них описаны в этой статье.

Небиохимические основы определения групп крови[править исходный текст]

В мембране эритроцитов человека содержится более 300 различных антигенных детерминант, молекулярное строение которых закодировано соответствующими генными аллелями хромосомных локусов. Количество таких аллелей и локусов в настоящее время точно не установлено.

Термин «группа крови» характеризует системы эритроцитарных антигенов, контролируемых определенными локусами, содержащими различное число аллельных генов, таких, например, как A, B и 0 («ноль») в системе AB0. Термин «тип крови» отражает её антигенный фенотип (полный антигенный «портрет», или антигенный профиль) — совокупность всех групповых антигенных характеристик крови, серологическое выражение всего комплекса наследуемых генов группы крови.

Две важнейшие классификации группы крови человека — это система AB0 и резус-система.

Известно также 46 классов других антигенов, из которых большинство встречается гораздо реже, чем AB0 и резус-фактор.

Типология групп крови

Система AB0

Предложена ученым Карлом Ландштейнером в 1900 году. Известно несколько основных групп аллельных генов этой системы: A¹, A², B и 0. Генный локус для этих аллелей находится на длинном плече хромосомы 9. Основными продуктами первых трёх генов — генов A¹, A² и B, но не гена 0 — являются специфические ферменты гликозилтрансферазы, относящиеся к классу трансфераз. Эти гликозилтрансферазы переносят специфические сахара — N-ацетил-D-галактозамин в случае A¹ и A² типов гликозилтрансфераз, и D-галактозу в случае B-типа гликозилтрансферазы. При этом все три типа гликозилтрансфераз присоединяют переносимый углеводный радикал к альфа-связующему звену коротких олигосахаридных цепочек.

Структура олигосахаридов H-антигена, отвечающего за группы крови системы АВ0

Субстратами гликозилирования этими гликозилтрансферазами являются, в частности и в особенности, как раз углеводные части гликолипидов и гликопротеидов мембран эритроцитов, и в значительно меньшей степени — гликолипиды и гликопротеиды других тканей и систем организма. Именно специфическое гликозилирование гликозилтрансферазой A или B одного из поверхностных антигенов — агглютиногена — эритроцитов тем или иным сахаром (N-ацетил-D-галактозамином либо D-галактозой) и образует специфический агглютиноген A или B.

В плазме крови человека могут содержаться агглютинины α и β, в эритроцитах — агглютиногены A и B, причём из белков A и α содержится один и только один, то же самое — для белков B и β.

Таким образом, существует четыре допустимых комбинации; то, какая из них характерна для данного человека, определяет его группу крови[1]:

α и β: первая (0)

A и β: вторая (A)

α и B: третья (B)

A и B: четвёртая (AB)

Система Rh (резус-система)

Резус крови — это антиген (белок), который находится на поверхности красных кровяных телец (эритроцитов). Он обнаружен в 1940 году Карлом Ландштейнером и А.Вейнером[2]. Около 85 % европейцев (99 % индийцев и азиатов) имеют резус и соответственно являются резус-положительными. Остальные же 15 % (7 % у африканцев), у которых его нет, — резус-отрицательный. Резус крови играет важную роль в формировании так называемой гемолитической желтухи новорожденных, вызываемой вследствие резус-конфликта иммунизованной матери и эритроцитов плода.

Известно, что резус крови — это сложная система, включающая более 40 антигенов, обозначаемых цифрами, буквами и символами. Чаще всего встречаются резус-антигены типа D (85 %), С (70 %), Е (30 %), е (80 %) — они же и обладают наиболее выраженной антигенностью. Система резус не имеет в норме одноименных аг­глютининов, но они могут появиться, если человеку с резус-отрицательной кровью перелить резус-положительную кровь.

Другие системы

На данный момент изучены и охарактеризованы десятки групповых антигенных систем крови, таких, как системы Даффи, Келл, Кидд, Льюис и др. Количество изученных и охарактеризованных групповых систем крови постоянно растёт.

Келл

Групповая система Келл (Kell) состоит из 2 антигенов, образующих 3 группы крови (К—К, К—k, k—k). Антигены системы Келл по активности стоят на втором месте после системы резус. Они могут вызвать сенсибилизацию при беременности, переливании крови; служат причиной гемолитической болезни новорождённых и гемотрансфузионных осложнений.[3]

Кидд

Групповая система Кидд (Kidd) включает 2 антигена, образующих 3 группы крови: lk (a+b-), lk (A+b+) и lk (a-b+). Антигены системы Кидд также обладают изоиммунными свойствами и могут привести к гемолитической болезни новорожденных и гемотрансфузионным осложнениям. Также это зависит от гемоглобина в крови.

Даффи

Групповая система Даффи (Duffy) включает 2 антигена, образующих 3 группы крови Fy (a+b-), Fy (a+b+) и Fy (a-b+). Антигены системы Даффи в редких случаях могут вызвать сенсибилизацию и гемотрансфузионные осложнения.

 

MNSs

Групповая система MNSs является сложной системой; она состоит из 9 групп крови. Антигены этой системы активны, могут вызвать образование изоиммунных антител, то есть привести к несовместимости при переливании крови. Известны случаи гемолитической болезни новорождённых, вызванные антителами, образованными к антигенам этой системы.

Лангерайс и Джуниор

В феврале 2012 года, ученые из Вермонтского университета (США) в сотрудничестве с японскими коллегами из Центра крови Красного Креста (Red Cross Blood Center) и французскими учеными из Национального института переливания крови (French National Institute for Blood Transfusion), открыли две новые «дополнительные» группы крови, включающие два белка на поверхности эритроцитов — ABCB6 и ABCG2. Эти белки относят к транспортным белкам (участвуют в переносе метаболитов, ионов внутри клетки и из нее)[4].

Вел-отрицательная группа

Впервые была обнаружена в начале 1950-х годов, когда у страдающей раком толстого кишечника пациентки после повторного переливания крови началась тяжелая реакция отторжения донорского материала. В статье, опубликованной в медицинском журнале Revue D'Hématologie, пациентку называли миссис Вел. В дальнейшем было установлено, что после первого переливания крови у пациентки выработались антитела против неизвестной молекулы. Вызвавшее реакцию вещество никак не удавалось определить, а новую группу крови в честь этого случая назвали Вел-отрицательной. Согласно сегодняшней статистике такая группа встречается у одного человека из 2500. В 2013 году ученым из Университета Вермонта удалось идентифицировать вещество, им оказался белок, получивший название SMIM1. Открытие белка SMIM1 довело количество изученных групп крови до 33.[5]

Определение группы крови

Определение группы крови по системе AB0[править исходный текст]

В клинической практике определяют группы крови с помощью моноклональных антител. При этом эритроциты испытуемого смешивают на тарелке или белой пластинке с каплей стандартных моноклональных антител (цоликлоны анти-А и цоликлоны анти-B), а при нечеткой агглютинации и при AB(IV) группе исследуемой крови добавляют для контроля каплю изотонического раствора. Соотношение эритроцитов и цоликлонов: ~0,1 цоликлонов и ~0,01 эритроцитов. Результат реакции оценивают через три минуты.

если реакция агглютинации наступила только с анти-А цоликлонами, то исследуемая кровь относится к группе А(II);

если реакция агглютинации наступила только с анти-B цоликлонами, то исследуемая кровь относится к группе B(III);

если реакция агглютинации не наступила с анти-А и с анти-B цоликлонами, то исследуемая кровь относится к группе 0(I);

если реакция агглютинации наступила и с анти-А и с анти-B цоликлонами, и ее нет в контрольной капле с изотоническим раствором, то исследуемая кровь относится к группе AB(IV).

Проба на индивидуальную совместимость по системе AB0[править исходный текст]

Агглютинины, не свойственные данной группе крови, носят название экстрагглютинов. Они иногда наблюдаются в связи с наличием разновидностей агглютиногена A и агглютинина α, при этом α1M и α2 агглютинины могут выполнять роль экстрагглютининов.

Феномен экстрагглютининов, а также некоторые другие явления, в ряде случаев могут быть причиной несовместимости крови донора и реципиента в пределах системы AB0 даже при совпадении групп. С целью исключения такой внутригрупповой несовместимости одноименных по системе AB0 крови донора и крови реципиента проводят пробу на индивидуальную совместимость.

На белую пластину или тарелку при температуре 15-25 °C наносят каплю сыворотки реципиента (~0,1) и каплю крови донора (~0,01). Капли смешивают между собой и оценивают результат через пять минут. Наличие агглютинации указывает на несовместимость крови донора и крови реципиента в пределах системы AB0, несмотря на то, что их группы крови одноименные.

Использование данных о группе крови

Переливание крови

Гемотрансфузия

Донорство крови

Вливание крови несовместимой группы может привести к иммунологической реакции, склеиванию (агрегации) эритроцитов, которая может выражаться в гемолитической анемии, почечной недостаточности, шоке и летальном исходе.

Сведения о группе крови в некоторых странах вводятся в паспорт (в том числе в России, по желанию владельца паспорта), у военнослужащих они могут быть нанесены на одежду.

Связь групп крови и показателей здоровья

В ряде случаев была выявлена взаимосвязь между группой крови и риском развития некоторых заболеваний (предрасположенность).

Согласно результатам исследований, опубликованным в 2012 году группой американских учёных под руководством проф. Лу Ци (Lu Qi) из Института здравоохранения Гарвардского университета (Harvard School of Public Health), лица с группой крови A (II), B (III) и AB (IV) имеют бо́льшую предрасположенность к сердечным заболеваниям, чем лица с группой крови О (I): на 23% для лиц с группой крови AB (IV), на 11% для лиц с группой крови В (III) и на 5% для лиц с группой крови A (II)[9].

Согласно другим исследованиям, у лиц с группой крови В (III) в несколько раз ниже заболеваемость чумой.[10] Имеются данные о взаимосвязи между группами крови и частотой других инфекционных заболеваний (туберкулез, грипп и др.).

У лиц, гомозиготных по антигенам (первой) группы крови 0 (I), в 3 раза чаще встречается язвенная болезнь желудка.[10]

У обладателей крови группы B (III) выше, чем у первой или второй группы, риск тяжелого заболевания нервной системы — болезни Паркинсона.[источник не указан 1306 дней]

Конечно, сама по себе группа крови не означает, что человек обязательно будет страдать «характерной» для неё болезнью.

Здоровье определяется множеством факторов, и группа крови — лишь один из маркеров.

В настоящее время созданы базы данных относительно корреляции определённых заболеваний и групп крови. Так, в обзоре американского исследователя-натуротерапевта Питера д’Адамо анализируется связь онкологических заболеваний различного типа и групп крови[11].

Околонаучная теория Д’Адамо, более 20 лет анализировавшего взаимосвязь заболеваемости с маркерами групп крови, становится всё более популярной. Он, в частности, связывает необходимую человеку диету с группой крови, что является сильно упрощённым подходом к проблеме.

Фенотип А (II) может быть у человека, унаследовавшего от родителей или два гена А (АА), или гены А и 0 (А0). Соответственно фенотип В (III) — при наследовании или двух генов В (ВВ), или В и 0 (В0). Фенотип 0 (I) проявляется при наследовании двух генов 0. Таким образом, если оба родителя имеют II группу крови (генотипы A0 и А0), кто-то из их детей может иметь первую группу (генотип 00). Если у одного из родителей группа крови A (II) с возможным генотипом АА и А0, а у другого B (III) с возможным генотипом BB или В0 — дети могут иметь группы крови 0 (I), А (II), B (III) или АВ (IV).

У родителя с группой крови I(0) не может быть ребёнка с группой крови IV(AB), вне зависимости от группы крови второго родителя.

У родителя с группой крови IV(AB) не может быть ребёнка с группой крови I(0), вне зависимости от группы крови второго родителя.

Наиболее непредсказуемо наследование ребенком группы крови при союзе родителей со II и III группами. Их дети могут иметь любую из четырёх групп крови.[37

Приведённые в таблице вероятностные проценты наследования группы крови берутся из элементарного комбинаторного расчета.

Резус-фактор наследуется по рецессивно-доминантному типу наследования. Положительный резус - доминантный признак, отрицательный - рецессивный. Фенотип Rh+ проявляется как при гомозиготном, так и при гетерозиготном генотипе (++ или +-), фенотип Rh- проявляется только при гомозиготном генотипе (только --).

У пары Rh- и Rh- могут быть дети только Rh-. У пары Rh+ и Rh-, а также у пары Rh+ и Rh+ могут быть дети как Rh+, так и Rh-, либо только Rh+, в зависимости от генотипа родителей Rh+.

 

5 ответ

Термин «аллергия» был введён венским педиатром Клеменсом Фон Пирке в 1906 г. Он заметил, что у некоторых из его пациентов наблюдаемые симптомы могли быть вызваны определёнными веществами (аллергенами) из окружающей среды, такими, как пыль, пыльца растений или некоторые виды пищи. На протяжении долгого времени считалось, что гиперчувствительность развивается в связи с нарушением функции иммуноглобулинов Е, однако впоследствии стало ясно, что многочисленные механизмы с участием различных химических веществ вызывают появление множества симптомов, ранее классифицированных как «аллергия».

P. G. H. Gell и R. R. A. Coombs выделили 4 основных типа реакций гиперчувствительности. На сегодняшний день известно 5 типов реакций гиперчувствительности. Термин аллергия был сохранён за первым типом реакций, характеризующимся классическими эффектами, опосредованными IgE{{fact}}.

К аллергии относятся иммунные реакции (реакции гиперчувствительности I типа), при которых в организме человека вырабатываются антитела (иммуноглобулины Е) для специфических белков. Когда эти вещества приводят к гиперчувствительности организма, они называются аллергенами. Следует отличать аллергию от аутоиммунных реакций: аутоиммунный процесс возникает тогда, когда обычные ткани организма оказываются изменены под действием каких-либо повреждающих факторов таким образом, что в белках этих тканей появляются и открываются антигенные детерминанты и происходит повышение чувствительности к приобретённым аутоантигенам [ источник не указан 583 дня ].

Первый тип гиперчувствительности характеризуется чрезмерной активацией тучных клеток (мастоцитов) и базофилов иммуноглобулинами Е(IgE), переходящей в общий воспалительный ответ, который может привести к различным симптомам, как доброкачественным, например, насморк, зуд, так и опасным для жизни — анафилактический шок, отёк Квинке.

Аллергия — часто встречающаяся болезнь. Многочисленные данные свидетельствуют о существовании наследственной предрасположенности к аллергии. Так, родители, страдающие аллергией, подвержены большему риску иметь ребёнка с той же патологией, чем здоровые пары. Однако строгого соответствия гиперчувствительности по отношению к определённым аллергенам между родителями и детьми не наблюдается.

В последние десятилетия отмечен выраженный рост заболеваемости аллергией. Существуют различные теории объясняющие этот феномен:

Теория влияния гигиеныhygiene hypothesis»), выдвинутая в 1989 David P. Strachan — утверждает, что переход к соблюдению норм гигиены предотвращает контакт организма со многими антигенами, что вызывает недостаточную загрузку иммунной системы (в особенности у детей). Поскольку наше тело сконструировано так, что оно должно постоянно противостоять определённому уровню угроз, иммунная система начинает реагировать на безобидные антигены.[1] Теория влияния гигиены была разработана для объяснения причин, по которым дети из английских многодетных семей гораздо реже страдали такими видами аллергии, как аллергический ринит или экзема, чем единственные дети в семье.

Эпидемиологические данные подтверждают теорию влияния гигиены. Исследования показывают, что различные иммунологические и аутоиммунные заболевания гораздо реже встречаются в странах третьего мира, чем в развитых и что иммигранты из развивающихся стран в развитые болеют иммунными расстройствами тем чаще, чем больше времени прошло с момента иммиграции.[2] Длительные исследования в развивающихся странах показывают увеличение иммунных расстройств по мере роста благосостояния и, соответственно, чистоты в стране.[3]. Использование антибиотиков в первый год жизни связали с частотой появления астмы и других аллергических реакций.[4] Использование антибактериальных чистящих средств, как и использование кесаревого сечения, связали с частотой появления астмы.[5][6] Следует помнить, что все эти исследования показывают лишь корреляцию между этими факторами, но не причинно-следственную связь.

Растущее потребление продуктов химической промышленности. Многие химические продукты могут выступать как в роли аллергенов, так и создавать предпосылки для развития аллергических реакции посредством нарушения функции нервной и эндокринной системы.

Однако, несмотря на многочисленные попытки объяснить резкий рост заболевания аллергией влиянием техногенной среды, до сих пор не было дано объяснения, почему одни и те же факторы на одних людей оказывают такое воздействие, а на других — нет. Никакой взаимосвязи заболевания аллергией с общим состоянием здоровья также не было выявлено.

Все типы проявления гиперчувствительности являются результатом нарушения механизма реализации иммунного ответа организма.

Патогенез реакции гиперчувствительности I типа состоит из фазы острого и замедленного ответа.


Дата добавления: 2015-08-14 | Просмотры: 851 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.029 сек.)