АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Основные виды вакцин (содержащие убитые бактерии, вирусы и их фрагменты, анатоксины; живые вакцины; синтетические и рекомбинантные вакцины)

Прочитайте:
  1. D.Вирусы
  2. I. 3. ВАКЦИНОЛОГИЯ - наука о лекарственных профилактических биопрепаратах - вакцинах
  3. I. Субъединичные вакцины
  4. II. 1. РАЗНОВИДНОСТИ ВАКЦИН
  5. II. 2. ОБ ОПАСНОСТИ ХИМИЧЕСКИХ ВЕЩЕСТВ ВХОДЯЩИХ В СОСТАВ ВАКЦИН
  6. II. ОСНОВНЫЕ ЗАДАЧИ ДИАГНОСТИКИ.
  7. II. Полусинтетические пенициллины
  8. II.Укажите основные синдромологические и классификационные критерии сформулированного Вами диагноза.
  9. III. 1. ПРОТИВОПОКАЗАНИЯ К ПРИМЕНЕНИЮ ВАКЦИН
  10. III. 4. 6. Выдача СЕРТИФИКАТА на безопасность конкретной вакцины.

Убитые микроорганизмы в качестве вакцин Наиболее простой метод отмены патогенности микроорганизмов при сохранении их антигенного состава - это лишение микробных клеток жизнеспособности. Для получения таких убитых вакцин необходимо следить за тем, чтобы основные протективные антигены не разрушались в процессе инактивации микроорганизмов. Возбудителей инактивируют высокой температурой или путем обработки определенными химическими соединениями Для усиления действия этого типа вакцин к ним, как правило, добавляют адъюванты. Примерами таких вакцин могут служить вакцины против тифа, холеры, полиомиелита (вакцина Солка). Живые аттенуированные вакцины Эти вакцины получают путем снижения вирулентности в результате длительного культивирования возбудителя вне организма животного, чувствительного к данной инфекции. Например, живые вакцины получают путем многократного пассажа микроорганизмов (вирус желтой лихорадки), культивирования их на специальных питательных средах (БЦЖ) или в экстремальных условиях (высокие температуры, ультрафиолетовое или ионизирующее облучение, например, для Bacillus anthracis), а также путем селекции спонтанных мутантов (Yersinia pestis). Решающим преимуществом живых вакцин является тот факт, что аттенуированные возбудители могут размножаться и мигрировать в ткани, что усиливает антигенный стимул и, в конечном счете, иммунный ответ. Другое существенное преимущество живых вакцин заключается в том, что местный иммунитет развивается именно в тех тканях, где обычно происходит размножение возбудителя.

Примером живых вакцин являются вакцины против кори, коревой краснухи, эпидемического паротита, желтой лихорадки, полиомиелита (ващинаСейбина), туберкулеза (БЦЖ). Эти вакцины вызывают субклиническую форму течения заболевания и затем эффективную защиту. Вакцины, содержащие в качестве основного иммунизирующего компонента фрагменты бактерий и вирусов (главным образом их оболочек) В этом качестве применяют капсульные полисахариды бактерий, которые эффективно индуцируют синтез антител к менингококковым, пневмококковым и гемофжъным инфекциям. Данные антигены конъюгируют с иммуногенным белковым носителем, поскольку сами по себе эти полисахариды не стимулируют Т-хелперы и поэтому не индуцируют достаточного количества клеток памяти. Другим примером этого типа вакцин могут служить вакцины из вирусных субъединиц, например, из поверхностного антигена вирусов гриппа и гепатита В. Данные вакцины весьма эффектив­ны, но дороги из-за сложной технологии изготовления.

Использование для вакцинации синтетических пептидов Для получения данного типа вакцин чаще всего производят синтез небольших пептидных фрагментов, соответствующих в иммунологическом отношении эпитопам микробных и вирусных антигенов. Такой синтез технически нетруден и недорог. Для повышения иммуногенности пептиды конъюгируют с Т-зависимым носителем и вводят в адьювант. Для этого в некоторых случаях пептидные фрагменты «сшивают» с мурамилдипептидом. Необходимо отметить, однако, что даже при нужной линейной последовательности аминокислот в синтетическом пептиде его спонтанная третичная структура не может точно моделировать конформацию исходного антигена, что снижает эффективность вакцинации. Технология рекомбинантных ДНК позволяет получать гены, кодирующие либо всю белковую молекулу антигена, либо ее фрагменты, встраивать их в подходящий вектор и экспрессировать в ссютветствующих клетках.Вакцины этого типа получают путем встраивания генов одного микроба или вируса в другой, менее вирулентный. Для вакцинации населения широкое применение получили коммерческие рекомбинантные вакцины против гепатита


Дата добавления: 2015-08-14 | Просмотры: 605 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)