АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Чем больше сила раздражения, тем больше, до известных пределов, величина ответных реакций.

Прочитайте:
  1. Больному делают ультразвуковое исследование задней большеберцовой артерии. Куда должен врач поставить датчик, чтобы исследовать сосуд?
  2. Больше всего просят хидаята те, кто обрел хидаят
  3. Большеглазый зубан — Dentex macrophtalmus
  4. Большехвостый капитанский горбыль -
  5. Большинство домов, стоящих больше 250 000 долларов, имеют библиотеки. Это о чем-то говорит.
  6. В каких величинах определяется подвижность в суставах?
  7. В очаге воспаления закономерно, в большей или меньшей мере, повышается осмотическое давление.
  8. В.большеберцовая
  9. Величина и отдача инвестиций сроком на 1 год
  10. Величина мембранного потенциала покоя для различных возбудимых образований.

· Закон силы времени

Чем больше сила раздражителя, тем меньше по времени может действовать данный раздражитель для получения ответной реакции.

· Закон градиента раздражения

Чем быстрее нарастает сила раздражителя до пороговой величины, тем быстрее появляется ответная реакция.

· Нейрон, его физиологические свойства, классификация, особенности возникновения и распространения возбуждения

· Нейрон (от др.-греч. νεῦρον — волокно, нерв) — это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высокоспециализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов. Место контакта двух нейронов называется синапсом.

Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро и другие органеллы, и отростков. Выделяют два вида отростков. (Аксон — длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов, но только один аксон. Один нейрон может иметь связи с до 20 тысяч других нейронов.

Физиологические свойства

Нейроны восприимчивы к раздражению, то есть способны воспринимать раздражитель и отвечать на него генерацией потенциала действия (ПД). Обычно раздражителем для нейрона служит нейромедиатор, выделяемый другими нейронами в синаптические щели. Одни синапсы вызывают деполяризацию нейрона, другие - гиперполяризацию; первые являются возбуждающими, вторые - тормозящими. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Классификация

По положению в рефлекторной дуге различают афферентные нейроны (сенсорные нейроны), эфферентные нейроны (двигательные нейроны) и вставочные нейроны.

На основании числа и расположения отростков нейроны делятся на униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные нейроны.

Все особенности распространения возбуждения в ЦНС объясняются ее нейронным строением: наличием химических синапсов, многократным ветвлением аксонов нейронов, наличием замкнутых нейронных путей. Этими особенностями являются следующие.

1. Иррадиация (дивергенция) возбуждения в ЦНС. Она объясняется ветвлением аксонов нейронов, их способностью устанавливать многочисленные связи с другими нейронами, наличием вставочных нейронов, аксоны которых также ветвятся (рис. 4.4, а).

Иррадиацию возбуждения можно наблюдать в опыте на спинальной лягушке, когда слабое раздражение вызывает сгибание одной конечности, а сильное энергичные движения всех конечностей и даже туловища. Дивергенция расширяет сферу действия каждого нейрона. Один нейрон, посылая импульсы в кору большого мозга, может участвовать в возбуждении до 5000 нейронов.

Рис. 4.4. Дивергенция афферентных дорсальных корешков на спинальные нейроны, аксоны которых, в свою очередь, ветвятся, образуя многочисленные коллатерали (в), и конвергенция эфферентных путей от различных отделов ЦНС на α-мотонейрон спинного мозга (6)

1. Конвергенция возбуждения (принцип общего конечного пути)схождение возбуждения различного происхождения по нескольким путям к одному и тому же нейрону или нейронному пулу(принцип шеррингтоновской воронки).Конвергенция возбуждения объясняется наличием многих аксонных коллатералей,вставочных нейронов, а также тем, что афферентных путей в несколько раз больше,чем эфферентных нейронов. На одном нейроне ЦНС может располагаться до 10 000синапсов. Явление конвергенции возбуждения в ЦНС имеет широкое распространение.Примером может служить конвергенция возбуждения на спинальном мотонейроне. Так,к одному и тому же спинальному мотонейрону подходят первичные афферентные волокна (рис. 4.4, б), а также различные нисходящие пути многих вышележащих центров ствола мозга и других отделов ЦНС. Явление конвергенции весьма важно:оно обеспечивает, например, участие одного мотонейрона в нескольких различных реакциях. Мотонейрон, иннервирующий мышцы глотки, участвует в рефлексах глотания, кашля, сосания, чиханья и дыхания, образуя общий конечный путь для многочисленных рефлекторных дуг. На рис. 4.4, я показаны два афферентных волокна, каждое из которых отдает коллатерали к 4 нейронам таким образом, что 3нейрона из общего их числа, равного 5, образуют связи с обоими афферентными волокнами. На каждом из этих 3 нейронов конвергируют два афферентных волокна.

На один мотонейрон может конвергировать множество коллатералей аксонов, до 10 000-20 000, поэтому генерация ПД в каждый момент зависит от общей суммы возбуждающих и тормозящих синаптических влияний. ПД возникают лишь в том случае, если преобладают возбуждающие влияния.Конвергенция может облегчать процесс возникновения возбуждения на общих нейронах в результате пространственной суммации подпороговых ВПСП либо блокировать его вследствие преобладания тормозных влияний (см. раздел 4.8).

3. Циркуляция возбуждения по замкнутым нейронным цепям. Она может продолжаться минуты и даже часы (рис. 4.5).

Рис. 4.5. Циркуляция возбуждения в замкнутых нейронных цепях по Лоренто де-Но (а) и по И.С.Беритову (б). 1,2,3возбуждающие нейроны

Циркуляция возбуждения одна из причин явления последействия, которое будет рассмотрено далее (см. раздел 4.7). Считают, что циркуляция возбуждения в замкнутых нейронных цепях наиболее вероятный механизм феномена кратковременной памяти (см. раздел 6.6). Циркуляция возбуждения возможна в цепи нейронов и в пределах одного нейрона в результате контактов разветвлений его аксона с собственными дендритами и телом.

4. Одностороннее распространение возбуждения в нейронных цепях, рефлекторных дугах. Распространение возбуждения от аксона одного нейрона к телу или дендритам другого нейрона, но не обратно объясняется свойствами химических синапсов, которые проводят возбуждение только в одном направлении(см. раздел 4.3.3).

5. Замедленное распространение возбуждения в ЦНС по сравнению с его распространением по нервному волокну объясняется наличием на путях распространения возбуждения множества химических синапсов. Время проведения возбуждения через синапс затрачивается на выделение медиатора в синаптическую щель, распространение его до постсинаптической мембраны,возникновение ВПСП и, наконец, ПД. Суммарная задержка передачи возбуждения в синапсе достигает примерно 2 мс. Чем больше синапсов в нейрональной цепочке,тем меньше общая скорость распространения по ней возбуждения. По латентному времени рефлекса, точнее по центральному времени рефлекса, можно ориентировочно рассчитать число нейронов той или иной рефлекторной дуги.

6. Распространение возбуждения в ЦНС легко блокируется определенными фармакологическими препаратами, что находит широкое применение в клинической практике. В физиологических условиях ограничения распространения возбуждения по ЦНС связаны с включением нейрофизиологических механизмов торможения нейронов.

Рассмотренные особенности распространения возбуждения дают возможность подойти к пониманию свойств нервных центров.

· Классификация физиологические свойства и функции нервных волокон

Нервные волокна представляют собой от­ростки нейронов, с помощью которых осу­ществляется связь между нейронами, а также нейронов с исполнительными клетками. В состав нервного волокна входят осевой ци­линдр (нервный отросток) и глиальная обо­лочка. По взаимоотношению осевых цилинд­ров с глиальными клетками выделяют два типа нервных волокон: безмиелиновые и миелиновые. Оболочку безмиелиновых волокон образуют шванновские клетки (леммоциты). При этом осевые цилиндры прогибают кле­точную оболочку леммоцитов и погружаются в них. Клеточная мембрана обычно полнос­тью окружает каждый осевой цилиндр и смы­кается над ним, образуя сдвоенную мембрану (мезаксон

 

Наиболее распространена классификация по Дж.Эрлангеру и Х.Гассеру (1937), в которой волокна разделяют на три типа: А, В и С (табл.3). Волокна типа А и В являются миелиновыми, типа С — безмиелиновыми. Во­локна А делят на 4 подгруппы: α, β, γ, δ. В пе­риферической нервной системе к волокнам Аα относятся афферентные волокна от механорецепторов кожи, мышечных и сухожиль­ных рецепторов, а также эфферентные во­локна к скелетным мышцам. К Аβ принадле­жат афферентные волокна от кожных рецеп­торов прикосновения и давления, от части мышечных и висцеральных рецепторов. Аγ представляют собой эфферентные волокна, через которые регулируется активность мы­шечных рецепторов. К Аδ относят афферент­ные волокна от части тактильных, темпера­турных и болевых, а также суставных рецеп­торов. К волокнам типа В принадлежат преганглионарные волокна вегетативной нерв­ной системы. К волокнам типа С относят постганглионарные волокна вегетативной нерв­ной системы, афферентные волокна от неко­торых болевых (вторичная боль), тепловых и висцеральных рецепторов.

Таблица 3. Типы волокон в нервах млекопи­тающих (по Эрлангеру—Гассеру)

Тип волокон Диаметр волокна, мкм Скорость проведения возбуждения, м/с Длительность абсолютного рефракторного периода, мс
Аa 12-20 70-120 0,4-1,0
Аb 5-12 30-70  
Аg 3-6 15-30  
Аd 2-5 12-30  
В 1-3 5-12 1,2
С 0,3-1,3 0,5-2,3  

Из данных, представленных в табл.3, видно, что средний диаметр каждого типа во­локна снижается от типа А до С (каждый примерно в 2 раза по отношению к предыду­щему). Соответственно этому снижается и скорость проведения возбуждения. Низкая скорость проведения нервного импульса в волокнах типа С связана с особенностями проведения возбуждения в безмиелиновых волокнах. Лабильность также уменьшается от волокон Аα до С и находится в обратной за­висимости от продолжительности фазы абсо­лютной рефрактерности. Возбудимость тоже уменьшается от волокон Аα (наибольшая возбудимость) к волокнам С (наименьшая возбудимость). Например, пороговая сила электрического тока у волокон С в 30—50 раз больше, чем у волокон Аα. Исследование факторов, блокирующих нервную проводи­мость, показало, что к давлению наиболее чувствительны волокна А, к кислородному голоданию (гипоксии) — волокна В, к мест­ным анестетикам — волокна С.

Нервные волокна имеют две основные функции — проведение возбуждения и транспорт веществ, обеспечивающих трофи­ческую функцию

· Распространение возбуждения по миелиновым и безмиелиновым нервным волокнам

· В состоянии покоя вся внутренняя поверхность мембраны нервного волокна несет отрицательный заряд, а наружная сторона мембраны – положительный. Электрический ток между внутренней и наружной стороной мембраны не протекает, так как липидная мембрана имеет высокое электрическое сопротивление.

· Во время развития потенциала действия в возбужденном участке мембраны происходит реверсия заряда (рис. 2, А). На границе возбужденного и невозбужденного участка начинает протекать электрический ток (рис. 2, Б). Электрический ток раздражает ближайший участок мембраны и приводит его в состояние возбуждения (рис. 2, В), в то время как ранее возбужденные участки возвращаются в состояние покоя (рис. 2, Г). Таким образом, волна возбуждения охватывает все новые участки мембраны нервного волокна.

Рис. 2. Механизм распространения возбуждения по безмиелиновому нервному волокну. Объяснения – в тексте

· «Вверх»

· Механизм проведения возбуждения по миелиновым нервным волокнам

· В миелинизированном нервном волокне участки мембраны, покрытые миелиновой оболочкой, являются невозбудимыми; возбуждение может возникать только в участках мембраны, расположенных в области перехватов Ранвье.

· При развитии ПД в одном из перехватов Ранвье происходит реверсия заряда мембраны (рис. 3, А). Между электроотрицательными и электроположительными участками мембраны возникает электрический ток, который раздражает соседние участки мембраны (рис. 3, Б). Однако в состояние возбуждения может перейти только участок мембраны в области следующего перехвата Ранвье (рис. 3, В). Таким образом, возбуждение распространяется по мембране скачкообразно (сальтаторно) от одного перехвата Ранвье к другому.

Рис. 3. Механизм распространения возбуждения по миелиновому нервному волокну. Объяснения – в тексте

· Законы проведения возбуждения в нервных стволах

  • ^ Закон физиологической и анатомической непрерывности — возбуждение может распространяться по нерву только при сохранении его морфологической и функциональной целостности. Травматическое повреждение нерва нарушают или полностью прекращают проведение возбуждения.

  • ^ Закон изолированного проведения — возбуждение, распространяющееся в одной группе волокон (например, A«), не передается на волокна другой группы (например, В) того же ствола. Вследствие этого информация, передаваемая по разным типам волокон, носит строго направленный специфический характер.

  • ^ Закон двустороннего проведения — возбуждение, возникающее в каком-либо участке нерва, распространяется в обе стороны от очага возникновения.

§ функции нервной системы рефлекторный принцип ее деятельности. Анализ структуры рефлекторной дуги.

Нервная система человека делится на центральную (головной и спинной мозг) и периферическую. Центральная нервная система обеспечивает индивидуальное приспособление, поведение организма в конкретных условиях среды обитания, регулирует деятельность каждого органа, обеспечивает интеграцию и объединение органов в единую систему, согласует интенсивность функционирования систем организма, обеспечивает реагирование организма как единого целого на раздражители из внешней и внутренней среды организма. Общей функцией ЦНС является ее трофическое влияние на клетки. В органах, лишенных связей с ЦНС, развиваются дистрофические, воспалительные и атрофические процессы, приводящие к снижению и прекращению функциональной активности органов.

Рефлекс – закономерная реакция организма на изменение внешней и внутренней среды, осуществляемая при участии нервной системы в ответ на раздражение рецепторов. В процессе рефлекторной реакции воспроизводится, изменяется интенсивность или прекращается деятельность тканей, органов или организма в целом. При помощи рефлекса устанавливается адекватное соотношение активности органов в пределах системы, систем в пределах организма, организма в его взаимоотношениях с окружающей средой. Рефлекторный ответ осуществляется за минимальное время и с максимальной безошибочностью.

Морфологическим субстратом рефлекса является рефлекторная дуга. Ее звенья:

1. Афферентное (рецепторы и афферентный нейрон).

2. Центральное (вставочные нейроны и синапсы).

3. Эфферентное (эффекторный нейрон и эффектор).

Простейшая (моносинаптическая) рефлекторная дуга имеет два нейрона: афферентный и эфферентный и один синапс. Рефлекторные дуги большинства рефлексов полисинаптические.

Область тела, раздражение которой вызывает определенный рефлекс, называется рецептивным полем рефлекса (рефлексогенной зоной). Нервный центр – совокупность нейронов, необходимых для осуществления определенного рефлекса или регуляции той или иной функции. Время от начала раздражения рецептора до появления ответной реакции называется латентным периодом рефлекса. Более медленное проведение возбуждения по рефлекторной дуге, чем по нерву, связано с явлением синаптической задержки, необходимой для:

1) выделения медиатора нервным окончанием в ответ на импульс;

2) диффузии медиатора через синаптическую щель к постсинаптической мембране;

3) возникновения возбуждающего постсинаптического потенциала. Вместе с формированием пикового потенциала на мембране нейрона это время составляет 1,5 – 2,0 мс. Время, необходимое для проведения возбуждения по центральной части рефлекторной дуги (с аффекторных нейронов на эффекторные), зависит от количества вставочных нейронов и называется центральным временем рефлекса.


Дата добавления: 2015-10-20 | Просмотры: 580 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.006 сек.)