АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Другие методы обеззараживания воды

Прочитайте:
  1. A. Предмет и методы отрасли
  2. Bystander-effect. Методы обнаружения. Биологическая роль.
  3. F43.8 Другие реакции на тяжелый стресс
  4. F44.88 Другие уточненные диссоциативные 2 (конверсионные) расстройства
  5. I. Методы симптоматической психотерапии
  6. II МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  7. II. МЕТОДЫ ОПЕРАЦИЙ И МЕТОДИКА ОБСЛЕДОВАНИЯ И ЛЕЧЕНИЯ В ХИРУРГИИ КИСТИ
  8. III. ВСПОМОГАТЕЛЬНЫЕ ИНСТРУМЕНТАЛЬНЫЕ И ЛАБОРАТОРНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ.
  9. V.I.V. Функциональные методы исследования и консультации специалистов
  10. V2: Анатомо-физиологические особенности органов и систем, методы обследования.

Хлорсодержащие препараты

Применение для обеззараживания воды хлорсодержащих реагентов (хлорной извести, гипохлоритов натрия и кальция) менее опасно в обслуживании и не требует сложных технологических решений. Правда, используемое при этом реагентное хозяйство более громоздко, что связано с необходимостью хранения больших количеств препаратов (в 3–5 раз больше, чем при использовании хлора). Во столько же раз увеличивается объем перевозок. При хранении происходит частичное разложение реагентов с уменьшением содержания хлора. Остается необходимость устройства системы притяжно-вытяжной вентиляции и соблюдения мер безопасности для обслуживающего персонала. Растворы хлорсодержаших реагентов коррозионно-активны и требуют оборудования и трубопроводов из нержавеющих материалов или с антикоррозийным покрытием.

Все большее распространение, особенно на небольших станциях водоподготовки, приобретают установки по производству активных хлорсодержаших реагентов электрохимическими методами. В России несколько предприятий предлагают установки типа «Санер», «Санатор», «Хлорэл-200» для производства гипохлорита натрия методом диафрагменного электролиза поваренной соли.

2.2 Озонирование

Преимущество озона (О3) перед другими дезинфектантами заключается в присущих ему дезинфицирующих и окислительных свойствах, обусловленных выделением при контакте с органическими объектами активного атомарного кислорода, разрушающего ферментные системы микробных клеток и окисляющего некоторые соединения, которые придают воде неприятный запах (например, гуминовые основания). Кроме уникальной способности уничтожения бактерий, озон обладает высокой эффективностью в уничтожении спор, цист и многих других патогенных микробов. Исторически применение озона началось еще в 1898 г. во Франции, где впервые были созданы опытно-промышленные установки по подготовке питьевой воды.

Количество озона, необходимое для обеззараживания питьевой воды, зависит от степени загрязнения воды и составляет 1–6 мг/л при контакте в 8–15 мин; количество остаточного озона должно составлять не более 0,3–0,5 мг/л, т. к. более высокая доза придает воде специфический запах и вызывает коррозию водопроводных труб.

С гигиенической точки зрения озонирование воды – один из лучших способов обеззараживания питьевой воды. При высокой степени обеззараживания воды оно обеспечивает ее наилучшие органолептические показатели и отсутствие высокотоксичных и канцерогенных продуктов в очищенной воде.

Ограничениями для распространения технологии озонирования являются высокая стоимость оборудования, большой расход электроэнергии, значительные производственные расходы, а также необходимость высококвалифицированного оборудования. Последний факт обусловил использование озона лишь при централизованном водоснабжении. Кроме того, в процессе эксплуатации установлено, что в ряде случаев (если температура обрабатываемой природной воды превышает 22 °С) озонирование не позволяет достичь требуемых микробиологических показателей по причине отсутствия эффекта пролонгации дезинфицирующего воздействия

Метод озонирования воды технически сложен и наиболее дорогостоящ среди других методов обеззараживания питьевой воды.. Технологический процесс включает последовательные стадии очистки воздуха, его охлаждения и осушки, синтеза озона, смешения озоновоздушной смеси с обрабатываемой водой, отвода и деструкции остаточной озоновоздушной смеси, вывода ее в атмосферу. Все это ограничивает использование данного метода в повседневной жизни.

Другим существенным недостатком озонирования явялется токсичность озона. Предельно допустимое содержание этого газа в воздухе производственных помещений - 0,1 г/м3. К тому же существует опасность взрыва озоновоздушной смеси.

Существующие конструкции современных озонаторов представляют собой большое количество близко расположенных ячеек, образованных электродами, один из которых находится под высоким напряжением, а второй – заземлен. Между электродами с определенной периодичностью возникает электрический разряд, в результате которого в зоне действия ячеек из воздуха образуется озон. Полученной озоновоздушной смесью барботируют обрабатываемую воду. Подготовленная таким образом вода по вкусу, запаху и другим свойствам превосходит воду, обработанную хлором.

2.3 Другие реагентные способы дезинфекции воды

Применение тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды основано на использовании их «олигодинамического» свойства – способности оказывать бактерицидное действие в малых концентрациях. Эти металлы могут вводиться в виде растворов солей либо методом электрохимического растворения. В обоих этих случаях возможен косвенный контроль их содержания в воде. Следует заметить, что ПДК ионов серебра и меди в питьевой воде достаточно жесткие, а требования к воде, сбрасываемой в рыбохозяйственные водоемы, еще выше.

К химическим способам обеззараживания питьевой воды относится также широко применявшееся в начале 20 в. обеззараживание соединениями брома и йода, обладающими более выраженными бактерицидными свойствами, чем хлор, но требующими и более сложной технологии. В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщенные йодом. При пропускании через них воды йод постепенно вымывается из ионита, обеспечивая необходимую дозу в воде. Такое решение приемлемо для малогабаритных индивидуальных установок. Существенным недостатком является изменение концентрации йода во время работы и отсутствие постоянного контроля его концентрации.

Применение активных углей и катионитов, насыщенных серебром, например, С-100 Ag или С-150 Ag фирмы «Purolite», преследует цели не «серебрения» воды, а предотвращения развития микроорганизмов при прекращении движения воды. При остановках создаются идеальные условиях для их размножения – большое количество органики, задержанное на поверхности частиц, их огромная площадь и повышенная температура. Наличие серебра в структуре этих частиц резко уменьшает вероятность обсеменения слоя загрузки. Серебросодержащие катиониты разработки ОАО НИИПМ – КУ-23СМ и КУ-23СП – содержат в себе значительно большее количество серебра и предназначены для обеззараживания воды в установках небольшой производительности.


Дата добавления: 2015-12-16 | Просмотры: 410 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)