АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Химические и физические превращения в ходе репликации ДНК.

Прочитайте:
  1. Антропогенные геохимические провинции, экологически обусловленные заболевания.
  2. Бакуловирусы насекомых. Особенности их репликации и использование в качестве векторов экспрессии в биотехнологии.
  3. Биологическое значение воды, ее физико-химические свойства.
  4. Биохимические исследования
  5. Биохимические методы
  6. Биохимические методы
  7. БИОХИМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ В ДИАГ-КЕ И.Б.
  8. Биохимические особенности нервной ткани
  9. Биохимические признаки СД
  10. Биохимические синдромы поражения печени

Матричный синтез, репликация

 

Репликация ДНК – это процесс копирования дезоксирибонуклеиновой кислоты, который происходит в процессе деления клетки. При этом генетический материал, зашифрованный в ДНК, удваивается и делится между дочерними клетками.

Репликация ДНК начинается за 5-10 ч до митоза и длится 4-8 ч. Ее результатом является образование двух точных копий всей ДНК. Во время митоза каждой из дочерних хромосом достается по одной из этих копий. Между окончанием репликации и началом митоза проходит 1-2 ч. В течение этого времени в клетке происходят подготовительные процессы, которые в итоге перерастают в митоз.

 

Химические и физические превращения в ходе репликации ДНК.

1. Реплицируется не одна, а обе цепи ДНК каждой хромосомы.

2. Обе цепи ДНК реплицируются полностью — от одного конца до другого, а не частично, как при транскрипции РНК.

3. В отличие от РНК-полимеразы ДНК-полимераза представляет собой комплекс основных ферментов репликации. Этот комплекс прикрепляется к ДНК и начинает двигаться вдоль нее. Другой фермент — ДНК-лигаза, который катализирует образование связей между соседними нуклеотидами, используя для этого энергию фосфатных связей.

4. Дочерние цепи ДНК начинают формироваться одновременно в сотнях участков обеих родительских цепей. Впоследствии концы отдельных сегментов вновь синтезированной ДНК «сшиваются» ферментом ДНК-лигазой.

5. Каждая вновь синтезированная цепь ДНК остается прикрепленной посредством слабых водородных связей к родительской цепи, используемой в качестве матрицы. Впоследствии обе цепи ДНК вместе скручиваются в спираль.

6. Каждая цепь ДНК имеет длину около 6 см и состоит из миллионов витков, поэтому раскрутить две цепи без специального механизма было бы невозможно. Это достигается с помощью ферментов, которые регулярно разрезают каждую спираль по всей длине, поворачивают ее фрагменты так, чтобы они могли расплестись, и затем вновь восстанавливают целостность каждой спирали. Так возникают две новые спирали.

 

Скорость репликации составляет порядка 45 000 нуклеотидов в минуту

 

12) РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ (РНК), тип нуклеиновых кислот; содержатся во всех живых клетках и участвуют в двух этапах реализации генетической информации: транскрипции (синтезе РНК на ДНК) и трансляции (синтезе белков на рибосомах). Молекулы РНК, как правило, представляют собой одноцепочечные незамкнутые полинуклеотиды, построенные из мономеров – нуклеотидов (в данном случае – рибонуклеотидов). В отдельных местах цепи нуклеотиды спариваются по принципу комплементарности и образуются участки двойной спирали. Число рибонуклеотидов в молекуле может быть от нескольких десятков до десяти тысяч. В отличие от дезоксирибонуклеотидов ДНК, содержащих углевод дезоксирибозу, рибонуклеотиды содержат углевод рибозу, а вместо азотистого основания тимина – урацил. Остальные азотистые основания (аденин, гуанин и цитозин) те же, что в ДНК. Различные классы РНК выполняют в клетках разные функции, но все они синтезируются на матрице ДНК.

 

Виды РНК:

Рибосомальные РНК (р-РНК), составляющие основную массу всех клеточных РНК (80–90 %), соединяясь с белками, формируют рибосомы, органоиды, осуществляющие синтез белков. В клетках эукариот р-РНК синтезируются в ядрышках.

Транспортные РНК (т-РНК) с помощью специального фермента связываются с аминокислотами и доставляют их на рибосомы. При этом определённые аминокислоты, как правило, переносятся определёнными («своими») т-РНК. Однако в ряде случаев одну аминокислоту могут кодировать несколько разных кодонов (вырожденность генетического кода). Соответственно, каждую из таких аминокислот могут переносить две или более т-РНК.

Информационные, или матричные, РНК (и-РНК, м-РНК) составляют в клетке ок. 2 % от общего количества РНК. В клетках эукариот и-РНК синтезируются в ядрах на матрицах ДНК, затем переходят в цитоплазму и связываются с рибосомами. Здесь они, в свою очередь, служат матрицами для синтеза белка на рибосомах: к и-РНК присоединяются т-РНК, несущие аминокислоты. Таким образом, и-РНК преобразуют информацию, заключённую в последовательности нуклеотидов ДНК, в последовательность аминокислот синтезируемого белка, т. е. генетическая информация реализуется в уникальной структуре белка, которая определяет его специфичность и функции. У некоторых вирусов РНК (одноцепочечная или двухцепочечная) выполняет роль хромосомы. Такие вирусы называются РНК-содержащими.

АТФ

В цитоплазме каждой клетки, а также в митохондриях, хлоропластах и ядрах содержится аденозинтрифосфорная кислота (АТФ). Она поставляет энергию для большинства реакций, происходящих в клетке. С помощью АТФ клетка синтезирует новые молекулы белков, углеводов, жиров, избавляется от отходов, осуществляет активный транспорт веществ, биение жгутиков и ресничек и т. д.

Молекула АТФ представляет собой нуклеотид, образованный азотистым основанием аденином, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ соединены между собой высокоэнергетическими (макроэргическими) связями

 

МАКРОЭРГИЧЕСКИЕ СВЯЗИ — высокоэнергетические, отличающиеся большим запасом свободной энергии химические связи, имеющиеся в соединениях, которые входят в состав живых организмов. Расщепление М. с. сопровождается освобождением большого количества энергии — от 7000 до 15 000. кал на 1 грамм-молекулу вещества (при расщеплении обычных связей освобождается не более 2000—3000 кал на 1 грамм-молекулу вещества).

 

Связи между фосфатными группами не очень прочные, и при их разрыве выделяется большое количество энергии. В результате гидролитического отщепления от АТФ фосфатной группы образуется аденозиндифосфорная кислота (АДФ) н высвобождается порция энергии:

Таким образом, АТФ — это главный универсальный поставщик энергии в клетках всех живых организмов.

АТФ чрезвычайно быстро обновляется. У человека, например, каждая молекула АТФ расщепляется и вновь восстанавливается 2 400 раз в сутки, так что ее средняя продолжительность жизни менее 1 мин. Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах (частично в цитоплазме). Образовавшаяся здесь АТФ направляется в те участки клетки, где возникает потребность в энергии.

 

 


Дата добавления: 2015-12-15 | Просмотры: 361 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)