АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Цветовое зрение. Существует две теории цветоощущения

Прочитайте:
  1. Алгоритм «Действие медицинского работника в случае выявления больного с подозрением на кишечную инфекцию (сальмонеллез, дизентерию, эшерихиоз, стафилококковая инфекция, диареи)»
  2. Алгоритм «Действие медицинского работника в случае выявления больного с подозрением на норовирусную инфекцию и алгоритм забора клинического материала»
  3. Алгоритм «Действие медицинского работника в случае выявления инфекционного больного с подозрением на анаэробную инфекцию»
  4. Американский психолог К. Изард выделяет 10 фундаментальных эмоций: интерес, радость, удивление, горе (страдание), гнев, отвращение, презрение, страх, стыд и вина (раскаяние).
  5. Бинокулярное зрение
  6. Бинокулярное зрение и стереоскопическое зрение.
  7. Бинокулярное зрение, методы его определения.
  8. Восприятие зрительных раздражителей. Цветное зрение. Световая и темновая адаптация.
  9. Восприятие пространства: острота зрения, поле зрения, бинокулярное зрение.
  10. Злата. Подозрение

Существует две теории цветоощущения. Согласно трехкомпонентной теории, в сетчатке существует три вида колбочек. В основе ее лежат работы М.В. Ломоносова, в дальнейшем дополненные Т. Юнгом

и Г. Гельмгольцем. Колбочки отличаются наличием в них различных светочувствительных веществ: одно из них чувствительно к красному цвету, другое — к зеленому, третье — к фиолетовому. Любой цвет влияет на все три вида колбочек, но в разной степени. Эти возбуждения суммируются зрительными нейронами и, дойдя до коры, дают то или иное ощущение цвета. Согласно другой теории (теории К. Геринга), в колбочках сетчатки существуют три светочувствительных вещества: бело-черное, красно-зеленое, зелено-синее. Под действием света эти вещества распадаются и дают ощущение белого, красного или желтого цвета.

В настоящее время подтверждение получила трехкомпонентная теория цветового зрения. Установлено, что часть нейронов активизируется лучами любой длины, такие клетки названы доминаторами. В других же ганглиозных клетках (модуляторах) импульсы возникают лишь при освещении лучами определенной длины. Выяснено, что одни колбочки максимально поглощают красно-оранжевые лучи, другие — зеленые, третьи — синие. Трехкомпонентная теория также объясняет такие факты, как последовательные цветовые образы и цветовая слепота.

Последовательные цветовые образы возникают при длительном рассматривании окрашенных предметов, а затем фиксации взгляда на белом листе. В этом случае предмет окрашивается в дополнительные цвета. При длительном действии лучей определенной длины волны в колбочках расщепляется соответствующее светочувствительное вещество. Когда же на глаз действует белый цвет, входящие в его состав лучи той длины, которые ранее действовали на глаз, воспринимаются хуже, возникает ощущение дополнительного цвета.

Цветовая слепота, или дальтонизм, была открыта в XVIII в. физиком Дальтоном, который сам страдал этим заболеванием. Оно отмечается у 8 % мужчин и 0,5 % женщин. Это генное заболевание, связанное с отсутствием определенных генов в непарной Х-хромосоме. Дальтонизм определяют с помощью цветовых таблиц, так как цветовая сле-пота важна для людей некоторых профессий.

Существует три разновидности цветовой слепоты: протанопия — «краснослепые», человек не воспринимает красного цвета, сине-го-лубые лучи кажутся ему бесцветными; дейтеранопия — «зеленослепые», человек не отличает зеленого цвета от темно-красного и голубого; тританопия — человек не воспринимает лучи синего и фиолетового цвета (встречается редко).

Все эти аномалии хорошо объясняются трехкомпонентной теорией. Каждая из них является результатом отсутствия одного из трех цвето-воспринимающих веществ, располагающихся в колбочках. Иногда имеет место и полная цветовая слепота, развивающаяся в результате повреждения всего колбочкового аппарата. При этом человек видит все предметы черно-белыми.

 

 

При переходе от темноты к свету наступает временное ослепление, но постепенно чувствительность глаза снижается (световая адаптация).

При переходе от света к темноте происходит обратное явление: человек ничего не видит из-за пониженной возбудимости фоторецепторов. Постепенно их чувствительность повышается, и человек начинает видеть (темновая адаптация). Чувствительность к видению в темноте повышается неравномерно: в первые 10 минут — в 50—80 раз, а в течение часа — во много десятков тысяч раз. В это время происходит восстановление зрительных пигментов. Йодопсин колбочек в темноте восстанавливается быстрее родопсина, поэтому первая фаза адаптации связана с колбочками. Но этот период не вызывает больших изменений чувствительности, так как чувствительность колбочкового аппарата невелика. Следующий период связан с процессом восстановления родопсина, который происходит медленно и заканчивается к концу первого часа. Он сопровождается резким повышением чувствительности палочек к свету. Так как в темноте максимально чувствительны палочки, то слабоосвещенные предметы видны лишь в том случае, если они находятся не в центре поля зрения, а когда их изображения падают на периферию сетчатки. Кроме того, в темноте осуществляется пространственная суммация вследствие того, что к одной биполярной клетке подключается большое число фоторецепторов.

Для глаза характерна контрастная чувствительность, проявляющаяся во взаимном торможении нейронов. Например, серая полоска на светлом фоне кажется темнее такой же полоски бумаги, лежащей на темном фоне. Светлый тон возбуждает большую часть нейронов сетчатки, а они оказывают торможение на клетки, активируемые сигналами от рецепторов, на которые проецируется бумажная полоска. Поэтому бумажка на светлом фоне вызывает более слабое возбуждение и кажется темной. Наиболее сильное торможение обнаруживается между близко расположенными нейронами. Это так называемый локальный контраст, проявляющийся при восприятии двух поверхностей с разной освещенностью.

Слепящая яркость — неприятное ощущение ослепления. Чем больше адаптирован глаз к темноте, тем ниже граница, которая ослепляет. Например, водителя машины ослепляют фары, при чтении нельзя использовать открытый источник света — свет должен быть рассеянным.

Латентный период возникновения зрительного образа составляет 0,1 с. Но и исчезает ощущение не сразу после прекращения действия раздражителя: оно держится еще некоторое время (если в темноте водить угольком или свечкой, то наблюдается не точка, а сплошная линия). При вращении круга с черными и белыми секторами он кажется серым. Минимальная частота следования стимулов, при которой происходит слияние отдельных ощущений, называется критической частотой слияния (основа для кинематографии).

Ощущения, продолжающиеся после прекращения раздражения, называются последовательными образами (смотрим на лампу, закрываем глаза, еще некоторое время видим свет). Отрицательный последовательный образ — если долго смотреть на предмет и перевести взгляд на светлый фон, то имеет место негативное изображение. Объясняется это следующим: когда мы смотрим на освещенный предмет, активируются определенные участки нейронов, а при переводе взгляда на равномерно освещенный экран отраженный свет оказывает более сильное возбуждение нате клетки, которые не были возбуждены.

В процессе формирования зрительного образа роль движений глаза очень велика и определяется тем, что для получения зрительной информации необходимо движение изображения на сетчатке. Импульсы в зрительном нерве возникают на включение и выключение светового изображения. При непрерывном воздействии света на зри-тельные рецепторы импульсация в нерве быстро прекращается и зри-тельное ощущение исчезает (если источник света укреплен на роговице и движется вместе с глазом, то через 1-2 с глаз перестает видеть свет). Таким образом, было обнаружено, что глаз при рассматривании предмета производит неощущаемые человеком непрерывные скачки. Вследствие этого изображение на сетчатке непрерывно смещается с одной точки на другую, раздражая все новые и новые фоторецепторы и вызывая вновь импульсацию в ганглиозных клетках. Продолжительность каждого скачка равна сотым долям секунды. Длительность интервалов между скачками 0,2-0,5 с. Это продолжительность фиксации взора на рассматриваемом предмете. Чем сложнее предмет, тем сложнее кривая движения глаза. Кроме скачков глаз непрерывно мелко дрожит.


Дата добавления: 2015-05-19 | Просмотры: 902 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)