Механизмы сокращения мышечного волокна
В покоящихся мышечных волокнах при отсутствии импульсации мотонейрона поперечные миозиновые мостики не прикреплены к актиновым миофиламентам. Тропомиозин расположен таким образом, что блокирует участки актина, способные взаимодействовать с поперечными мостиками миозина. Тропонин тормозит миозин — АТФ-азную активность и поэтому АТФ не расщепляется. Мышечные волокна находятся в расслабленном состоянии.
При сокращении мышцы длина А-дисков не меняется, J-диски укорачиваются, а Н-зона А-дисков может исчезать Эти данные явились основой для создания теории, объясняющей сокращение мышцы механизмом скольжения (теорией скольжения) тонких актиновых миофиламентов вдоль толстых миозиновых. В результате этого миозиновые миофиламенты втягиваются между окружающими их актиновыми. Это приводит к укорочению каждого саркомера, а значит, и всего мышечного волокна.
Молекулярный механизм сокращения мышечного волокна состоит в том, что возникающий в области концевой пластинки потенциал действия распространяется по системе поперечных трубочек вглубь волокна, вызывает деполяризацию мембран цистерн саркоплазмати-ческого ретикулума и освобождение из них ионов кальция. Свободные ионы кальция в межфибриллярном пространстве запускают процесс сокращения. Совокупность процессов, обуславливающих распространение потенциала действия вглубь мышечного волокна, выход ионов кальция их саркоплазматического ретикулума, взаимодействие сократительных белков и укорочение мышечного волокна называют «электромеханическим сопряжением». Временная последовательность между возникновением потенциала действия мышечного волокна, поступлением ионов кальция к миофибриллам и развитием сокращения волокна показана на рисунке 4.4.
При концентрации ионов Са2+ в межмиофибриллярном пространстве ниже 10″ тропомиозин располагается таким образом, что блокирует прикрепление поперечных миозиновых мостиков к нитям актина. Поперечные мостики миозина не взаимодействуют с нитями актина. Продвижение относительно друг друга нитей актина и миозина отсутствует. Поэтому мышечное волокно находится в расслабленном состоянии. При возбуждении волокна Са2+ выходит из цистерн саркоплазматического ретикулума и, следовательно, концентрация его вблизи миофибрилл возрастает. Под влиянием активирующих ионов Са2+ молекула тропонина изменяет свою форму таким образом, что выталкивает тропомиозин в желобок между двумя нитями актина, освобождая тем самым участки для прикрепления миозиновых поперечных мостиков к актину. В результате поперечные мостики прикрепляются к актиновым нитям. Поскольку головки миозина совершают «гребковые» движения в сторону центра саркомера происходит «втягивание» актиновых миофиламентов в промежутки между толстыми миозиновыми нитями и укорочение мышцы.
19.
Мышечная система обладает рядом физических и физиологических свойств. К основным физическим свойствам относятся:
Двоякое лучепреломление (анизотропия). Формируется за счет дисков А, заключается в том, что в обыкновенном свете анизотропные участи выглядят темными, а в поляризованном - светлыми, если свет пропускается в продольном направлении, и темными, если он проходит в поперечном направлении. Чередование анизотропных и изотропных дисков и создает поперечную исчерченность мышцам.
Растяжимость. Связана с наличием в мышцах эластического компонента мембраны, полоски, саркоплазматического ретикулюма, …).
Эластичность. Это свойство связано с растяжимостью и заключается в том, что после растяжения мышца приходит в исходное положение.
Упругость. Это свойство мышцы связано с ее сжатием. После сжатия мышца способна приходить в исходное состояние.
Пластичность. Заключается в том, что мышца способна некоторое время сохранять приданную ей искусственную форму. Пластические свойства скелетных мышц выражены очень слабо, они в большей степени присущи гладкой мускулатуре. При некоторых заболеваниях (кататоническая форма шизофрении) пластические свойства скелетных мышц становятся выраженным.
К физиологическим свойствам мышц относятся - возбудимость, проводимость и сократимость.
Работа мышц. Поскольку концы мышцы прикреплены на костях, то точки ее начала и прикрепления при сокращении приближаются друг к другу, а сами мышцы при этом выполняют определенную работу. Таким образом, тело человека или его части при сокращении соответствующих мышц изменяют свое положение, приходят в движение, преодолевают сопротивление силы тяжести или, наоборот, уступают этой силе. В других случаях при сокращении мышц тело удерживается в определенном положении без выполнения движения. Исходя из этого, различают преодолевающую, уступающую и удерживающую работу мышц.
Преодолевающая работа мышц выполняется в том случае, если сила сокращения мышцы изменяет положение части тела, конечности или ее звена, с грузом или без него, преодолевая силу сопротивления.
Уступающей называют работу, при которой сила мышцы уступает действию силы тяжести части тела (конечности) и удерживаемого ею груза. Мышца работает, однако она не укорачивается при этом, а, наоборот, удлиняется; например, когда невозможно поднять или удержать на весу предмет, имеющий большую массу. При большом усилии мышц приходится опустить это тело на пол или на другую поверхность.
Удерживающая работа выполняется, если силой мышечных сокращений тело или груз удерживается в определенном положении без перемещения в пространстве. Например, человек стоит или сидит, не двигаясь, или держит груз в одном и том же положении. Сила мышечных сокращений уравновешивает массу тела или груза. При этом мышцы сокращаются без изменения их длины (изометрическое сокращение).
Преодолевающую и уступающую работу, когда сила мышечных сокращений перемещает тело или его части в пространстве, можно рассматривать как динамическую работу. Удерживающая работа, при которой движения всего тела или части тела не происходит, является работой статической.
Кости, соединенные суставами, при сокращении мышц действуют как рычаги. В биомеханике выделяют рычаг первого рода, когда точки сопротивления и приложения мышечной силы находятся по разные стороны от точки опоры, и рычаг второго рода, в котором обе силы прилагаются по одну сторону от точки опоры, на разном расстоянии от нее.
Рычаг первого рода двуплечий носит название «рычаг равновесия». Точка опоры располагается между точкой приложения силы (сила мышечного сокращения) и точкой сопротивления (сила тяжести, масса органа). Примером такого рычага может служить соединение позвоночника с черепом. Равновесие достигается при условии, если вращающий момент прилагаемой силы (произведение силы, действующей на затылочную кость, на длину плеча, которая равна расстоянию от точки опоры до точки приложения силы) равен вращающему моменту силы тяжести (произведение силы тяжести на длину плеча, равную расстоянию от точки опоры до точки приложения силы тяжести).
Рычаг второго рода одноплечий. В биомеханике (в отличие от механики) он бывает двух видов. Вид такого рычага зависит от места расположения точки приложения силы и точки действия силы тяжести, которые и в том, и в другом случае находятся по одну сторону от точки опоры. Первый вид рычага второго рода (рычаг силы) имеет место в том случае, если плечо приложения мышечной силы длиннее плеча сопротивления (силы тяжести). Рассматривая в качестве примера стопу, можно видеть, что точкой опоры (ось вращения) служат головки костей плюсны, а точкой приложения мышечной силы (трехглавой мышцы голени) является пяточная кость. Точка сопротивления (тяжесть тела) приходится на место сочленения костей голени со стопой (голеностопный сустав). В этом рычаге отмечаются выигрыш в силе (плечо приложения силы длиннее) и проигрыш в скорости перемещения точки сопротивления (ее плечо короче). У второго вида одноплечевого рычага (рычага скорости) плечо приложения мышечной силы короче, чем плечо сопротивления, где приложена противодействующая сила, сила тяжести. Для преодоления силы тяжести, точка приложения которой отстоит на значительном расстоянии от точки вращения в локтевом суставе (точка опоры), необходима значительно большая сила мышц-сгибателей, прикрепляющихся вблизи от локтевого сустава (в точке приложения силы). При этом наблюдаются выигрыш в скорости и размахе движения более длинного рычага (точка сопротивления) и проигрыш в силе, действующей в точке приложения этой силы.
Сила мышц
Сила — это произведение массы на сообщенное ей ускорение. При выполнении некоторых трудовых и спортивных движений наибольшая сила мышц достигается либо за счет наибольшего увеличения массы поднимаемого или перемещаемого груза, либо за счет возрастания ускорения, т. е. изменения скорости до максимальной величины. В первом случае увеличивается напряжение мышцы, а во втором — скорость ее сокращения. Движения у человека обычно происходят при сочетании сокращения мышц с их напряжением. Поэтому при возрастании скорости сокращения пропорционально увеличивается и напряжение. Чем больше масса груза, тем меньше сообщаемое ему человеком ускорение.
Максимальная сила мышцы измеряется определением массы максимального груза, который она может сместить. При таких изометрических условиях мышца почти не сокращается, а ее напряжение является предельным. Следовательно, степень напряжения мышцы — выражение ее силы.
Силовые движения характеризуются максимальным напряжением при увеличении массы груза и неизменной скорости его перемещения.
Сила мышцы не зависит от ее длины, а зависит главным образом от ее толщины, от физиологического поперечника, т. е. от количества мышечных волокон, приходящихся на наибольшую площадь ее поперечного сечения. Физиологическим поперечником называется площадь сечения всех мышечных волокон. У перистых и полуперистых мышц этот поперечник больше анатомического. У веретенообразных и параллельных мышц физиологический поперечник совпадает с анатомическим. Поэтому наиболее сильные перистые мышцы, затем полуперистые, веретенообразные и, наконец, наиболее слабые мышцы с параллельным ходом волокон. Сила мышцы зависит также от ее функционального состояния, от условий ее работы, от предельной частоты и величины, пространственной и временной суммации притекающих к ней нервных импульсов, вызывающих ее сокращение, количества функционирующих нейромоторных единиц и от импульсов, регулирующих обмен веществ. Сила мышц повышается при тренировке, снижается при голодании и утомлении. Вначале она увеличивается с возрастом, а затем к старости уменьшается.
Сила мышцы при максимальном ее напряжении, развиваемая при наибольшем ее возбуждении и наиболее выгодной длине до начала ее напряжения, называется абсолютной.
Абсолютная сила мышцы определяется в килограммах или ньютонах (Н). Максимальное напряжение мышцы у человека вызывается волевым усилием.
Относительная сила мышцы высчитывается следующим образом. Определив абсолютную силу в килограммах или ньютонах, делят ее на число квадратных сантиметров поперечного сечения мышцы. Это позволяет сравнить силу разных мышц одного и того же организма, силу одноименных мышц разных организмов, а также изменения силы одной и той же мышцы данного организма в зависимости от сдвигов ее функционального состояния. Относительная сила скелетной мышцы лягушки 2-3 кг, разгибателя шёи человека — 9 кг, жевательной мышцы — 10 кг, двуглавой мышцы плеча — 11 кг, трехглавой мышцы плеча — 17 кг.
Динамометрия — метод измерения силы сокращения различных мышечных групп. Для динамометрии существуют различного типа динамометры. Наиболее распространен пружинный динамометр (рис.1). Испытуемый сжимает его кистью вытянутой руки. Сила сжатия указывается стрелкой на специальной шкале. Другая модификация — динамометр Штернберга (рис. 2), имеющий две широкие параллельные ручки, которые испытуемый также сжимает кистью. Существуют ртутные динамометры (рис. 3), в которых сила давления на датчик определяется с помощью ртутного манометра. Разновидность динамометрии — динамография — метод, позволяющий регистрировать силу сокращения мышц графически в виде серии кривых. Этот способ отражает динамику длительного мышечного усилия определенной группы мышц. Динамометрию применяют в антропологии,антропометрии, невропатологии, курортологии и т. Д
20. Утомление мышц
Утомление — это временное снижение или потеря работоспособности, т. е. результат предшествовавшей работы. Утомление мышцы в организме в условиях кровообращения зависит не только от величины произведенной ею длительной работы, а от числа поступающих к ней волн возбуждения, вызывающих ее сокращение. При той же частоте раздражения и других равных условиях утомление появляется раньше при большей нагрузке мышцы. При той же нагрузке и других равных условиях утомление наступает раньше при более частых раздражениях. В начале работы высота сокращений увеличивается, а затем признаками развивающегося утомления являются постепенное уменьшение высоты сокращений, увеличение их продолжительности и нарастание контрактуры. Развитие утомления зависит от изменения обмена веществ, кровообращения,температуры и других условий. Чем выше обмен веществ и лучше кровообращение, тем позднее наступает утомление. Оно наступает значительно раньше, когда мышца сокращается, растягиваясь грузом при изометрическом сокращении, и позднее в том случае, когда она сокращается без груза, а следовательно, без напряжения.
Если довести мышцу до полного утомления раздражением электрическим током, то после перемены направления тока ее работоспособность сразу восстанавливается. Это восстановление объясняется изменением состояния белков мышцы и сдвигами ионов на полюсах тока. Изолированная мышца уменьшает свою работу или даже перестает сокращаться, когда запас гликогена составляет половину исходного количества. Эти факты не подтверждают теорию истощения (Шифф, 1868), которая объясняет утомление мышцы израсходованием веществ, освобождающих энергию для ее работы. Однако запасы гликогена в организме человека ограничены и составляют 300-400 г. При очень интенсивной работе они потребляются за 1,5-2 ч, что приводит к такому снижению содержания сахара в крови, при котором работа становится невозможной. Введение сахара в организм восстанавливает его работоспособность.
Теория отравления мышцы при утомлении накапливающимся в ней особым ядом — кенотоксином (Вейхардт, 1904) оказалась необоснованной. Но есть доказательства того, что утомление иногда связано с отравлением возбуждающихся структур продуктами обмена веществ, главным образом фосфорной и молочной кислотами в момент их образования. Остаточные продукты обмена веществ как бы засоряют организм и вызывают утомление — теория засорения (Пфлюгер, 1872).
Накопление фосфорной и молочной кислот уменьшает работоспособность мышцы. Изолированное мышечное волокно в отличие от целой мышцы утомляется значительно позднее при одном и том же числе раздражающих импульсов. Это объясняется тем, что конечные продукты обмена веществ быстрее удаляются из него. В тренированной мышце вследствие большого ускорения анализа и синтеза веществ, обеспечивающих ее работу, утомление наступает позднее. После промывания кровеносных сосудов изолированной мышцы, доведенной до полного утомления, следовательно, после удаления из нее части остаточных продуктов обмена веществ она вновь начинает сокращаться несмотря на то, что не восстановился запас углеводов и кислорода. Эти факты доказывают, что остаточные продукты распада веществ, образующиеся в работающей мышце, — одна из причин ее утомления.
Существует также теории удушения (М. Ферворн, 1903), приписывающая главную роль в утомлении недостатку кислорода. Известно, что работа может продолжаться десятки минут и даже часы без утомления, когда.уровень потребления кислорода ниже предела его поступления, возможного для работающего (истинное устойчивое состояние). Когда потребление кислорода достигает максимума, оно может находиться на постоянном уровне, но не обеспечивает потребность организма в кислороде (кажущееся, или.южное, устойчивое состояние) и работа в этом случае может продолжаться не больше 10-40 мин.
Утомление является нормальным физиологическим процессом, который приводит к прекращению работы. Во время перерывов в работе восстанавливается работоспособность мышц. Поэтому обоснованность участия мелочной и фосфорной кислот в наступлении утомления не позволяет сделать нелепый вывод о том, то труд вреден, так как он, якобы, ведет к отравлению. Нельзя ставить знак равенства между утомлением изолированной мышцы и утомлением всего организма, в котором наступление утомления зависит от изменения функций нервной системы и желез внутренней секреции и от изменения регуляции центральной нервной системой обмена веществ, кровообращения и дыхания. Развитие утомления зависит от снижения работоспособности системы кровообращения, в особенности сердца, и дыхательной системы.
В нормальных условиях при длительной физической работе возбуждение и сокращение мышцы — два взаимосвязанных процесса, которые происходят при потреблении кислорода, так как они осуществляются благодаря очень сложным химическим процессам, завершающимся окислением остаточных продуктов обмена веществ. Работоспособность мышц после утомления восстанавливается в результате окисления этих продуктов. Поэтому потребление кислорода при мышечной работе значительно увеличивается. Если кислорода поступает недостаточно, то при интенсивной мышечной работе наступает недостаток кислорода — кислородный долг. В условиях недостаточности кислорода во время работы функции нервной системы понижаются, что является основной причиной утомления. Кислородный долг погашается благодаря усиленному кровообращению и дыханию не только во время работы, но и после ее окончания. Это погашение кислородного долга заканчивается только после полного окисления остаточных продуктов обмена веществ, образовавшихся во время работы, и полного окончания восстановительных процессов.
В нервно-мышечном препарате утомление развивается в области мионеврального соединения. Основная теория утомления, приписывающая главную роль его развитию в центральной нервной системе целого организма, сформулирована И, М, Сеченовым (1902).
Имеются многочисленные доказательства ведущей роли центральной нервной системы в развитии утомления. Утомлена наступает при действии условных раздражителей. При утомлении усиливается торможение условных и безусловных рефлексов. На развитие утомления влияют приток афферентных импульсе; в головной мозг, эмоции. Сознательная, произвольная мышечная деятельность утомляет больше, чем непроизвольная, автоматическая. Существенное значение для наступления утомления имеет функциональное состояние головного мозга, которое изменяет: при гипоксемии, гипогликемии, гипертермии, накоплении метаболитов в крови, сдвигах функций внутренних органов, особенно сердечнососудистой и дыхательной систем.
Закон средних нагрузок и средних скоростей сокращения имеет большое значение для трудовой деятельности и спорта.
Физическая нагрузка вызывает комплекс соматовегетативных изменений в организме: возрастают ЧСС, ударный объем сердца, АД, потребление организмом О2, частота дыхания и др. При умеренных физических нагрузках обмен веществ идет по аэробному пути.
Тяжелая работа сопровождается активацией анаэробного окисления, в результате которого в мышцах накапливается молочная кислота, развивается мышечное утомление.
Утомление - физиологическое состояние человека, возникающее вследствие тяжелой или длительной работы, которое выражается во временном снижении работоспособности.
Мышечное (физическое) и центральное (нервно-психическое) утомление обычно сочетаются.
Утомление характеризуется уменьшением силы и выносливости мышц, нарушением координации движений, ослаблением оперативной памяти, внимания, снижением скорости переработки информации. Предполагают, что причинами утомления могут быть истощение депо гликогена и ослабление процесса ресинтеза АТФ, накопления кислых продуктов метаболизма, истощение депо кальция и утомление нервных центров, регулирующих сокращения отдельных групп мышц. Субъективно утомление ощущается в виде усталости и потребности во сне.
Отдых – состояние покоя или специально организованный вид деятельности, снижающие утомление и постепенно возвращающие функции организма к норме.
И.М. Сеченов установил, что работа одних групп мышц конечностей устраняет утомление других групп, связанное с их работой. Это положение легло в основу определения 2-х типов отдыха: пассивного и активного. Первый из них предусматривает относительный покой, второй – выполнение вида работы, существенно отличающегося от обычно выполняемого труда.
Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица (ДЕ). Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт – нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон. Двигательные единицы мелких мышц, осуществляющих тонкие движения (мышцы глаза, кисти), содержат небольшое количество мышечных волокон. В крупных их в сотни раз больше. Все ДЕ в зависимости от функциональных особенностей делятся на 3 группы:
I. Медленные неутомляемые. Они образованы "красными" мышечными волокнами, в которых меньше миофибрилл. Скорость сокращения и сила этих волокон относительно небольшие, но они мало утомляемы. Поэтому их относят к тоническим. Регуляция сокращений таких волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек. Пример – камбаловидная мышца.
IIВ. Быстрые, легко утомляемые. Мышечные волокна содержат много миофибрилл и называются "белыми". Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными. Мотонейроны этих ДЕ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Мышцы глаза.
IIA. Быстрые, устойчивые к утомлению. Занимают промежуточное положение.
22Механизм мышечного сокращения
Скелетная мышца представляет собой сложную систему, преобразующую химическую энергию в механическую работу и тепло. В настоящее время хорошо исследованы молекулярные механизмы этого преобразования.
Структурная организация мышечного волокна. Мышечное волокно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат — миофибриллы. Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии, системы продольных трубочек — саркоплазматическая сеть (ретикулум) и система поперечных трубочек — Т-система. Функциональной единицей сократительного аппарата мышечной клетки является саркомер (рис. 2.20,А); из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками. Саркомеры в миофибрилле расположены последовательно, поэтому сокращение саркомеров вызывает сокращение миофибриллы и общее укорочение мышечного волокна.
Изучение структуры мышечных волокон в световом микроскопе позволило выявить их поперечную исчерченность. Электронно-микроскопические исследования показали, что поперечная исчерченность обусловлена особой организацией сократительных белков миофибрилл — актина (молекулярная масса 42 000) и миозина (молекулярная масса около 500 000). Актиновые филаменты представлены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Эти филаменты длиной 1 мкм и диаметром 6—8 нм, количество которых достигает около 2000, одним концом прикреплены к Z-пластинке. В продольных бороздках актиновой спирали располагаются нитевидные молекулы белка тропомиозина. С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка — тропонина. Тропонин и тропомиозин играют важную роль в механизмах взаимодействия актина и миозина. В середине саркомера между нитями актина располагаются толстые нити миозина длиной около 1,6 мкм. В поляризационном микроскопе эта область видна в виде полоски темного цвета (вследствие двойного лучепреломления) — анизотропный А-диск. В центре его видна более светлая полоска Н. В ней в состоянии покоя нет актиновых нитей. По обе стороны А-диска видны светлые изотропные полоски — I-диски, образованные нитями актина. В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. При электронной микроскопии в центре Н-полоски обнаружена М-ли-ния — структура, которая удерживает нити миозина. На поперечном срезе мышечного волокна можно увидеть гексагональную организацию миофиламента: каждая нить миозина окружена шестью нитями актина (рис. 2.20, Б).
При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Они ориентированы по отношению к оси миозиновой нити под углом 120°. Согласно современным представлениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТФазную активность при связывании с актином. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.
Использование микроэлектродной техники в сочетании с интерференционной микроскопией позволило установить, что нанесение электрического раздражения на область Z-пластинки приводит к сокращению саркомера, при этом размер зоны диска А не изменяется, а величина полосок Н и I уменьшается. Эти наблюдения свидетельствовали о том, что длина миозиновых нитей не изменяется. Аналогичные результаты были получены при растяжении мышцы — собственная длина актиновых и миозиновых нитей не изменялась. В результате этих экспериментов выяснилось, что изменялась область взаимного перекрытия актиновых и миозиновых нитей. Эти факты позволили Н. Huxley и A. Huxley предложить независимо друг от друга теорию скольжения нитей для объяснения механизма мышечного сокращения. Согласно этой теории, при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых миозиновых. В настоящее время выяснены многие детали этого механизма и теория получила экспериментальное подтверждение.
Механизм мышечного сокращения. В процессе сокращения мышечного волокна в нем происходят следующие преобразования:
А. Электрохимическое преобразование:
1. Генерация ПД.
2. Распространение ПД по Т-системе.
3. Электрическая стимуляция зоны контакта Т-системы и саркоплазматического ретикулума, активация ферментов, образование инозитолтрифосфата, повышение внутриклеточной концентрации ионов Са2+.
Б. Хемомеханическое преобразование:
4. Взаимодействие ионов Са2+ с тропонином, освобождение активных центров на актиновых филаментах.
5. Взаимодействие миозиновой головки с актином, вращение головки и развитие эластической тяги.
6. Скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укорочение мышечного волокна.
Передача возбуждения с двигательного мотонейрона на мышечное волокно происходит с помощью медиатора ацетилхолина (АХ). Взаимодействие АХ с холинорецептором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки, который может достигать 60 мВ. При этом область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает ПД, который распространяется в обе стороны со скоростью примерно 3—5 м/с при температуре 36 oС. Таким образом, генерация ПД является первым этапом мышечного сокращения.
Вторым этапом является распространение ПД внутрь мышечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна. Т-система тесно контактирует с терминальными цистернами саркоплазматической сети двух соседних саркомеров. Электрическая стимуляция места контакта приводит к активации ферментов, расположенных в месте контакта и образованию инозитолтрифосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са2+ из цистерн и повышению внутриклеточной концентрации Са2+ с 107до 105 M. Совокупность процессов, приводящих к повышению внутриклеточной концентрации Са2+ составляет сущность третьего этапа мышечного сокращения. Таким образом, на первых этапах происходит преобразование электрического сигнала ПД в химический — повышение внутриклеточной концентрации Са2+, т. е. электрохимическое преобразование.
При повышении внутриклеточной концентрации ионов Са2+ тропомиозин смещается в желобок между нитями актина, при этом на актиновых нитях открываются участки, с которыми могут взаимодействовать поперечные мостики миозина. Это смещение тропомиозина обусловлено изменением конформации молекулы белка тропонина при связывании Са2+. Следовательно, участие ионов Са2+ в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин.
Существенная роль кальция в механизме мышечного сокращения была доказана в опытах с применением белка экворина, который при взаимодействии с кальцием излучает свет. После инъекции экворина мышечное волокно подвергали электрической стимуляции и одновременно измеряли мышечное напряжение в изометрическом режиме и люминесценцию экворина. Обе кривые полностью коррелировали друг с другом (рис. 2.21). Таким образом, четвертым этапом электромеханического сопряжения является взаимодействие кальция с тропонином.
Следующим, пятым, этапом электромеханического сопряжения является присоединение головки поперечного мостика к актиновому филаменту к первому из нескольких последовательно расположенных стабильных центров. При этом миозиновая головка поворачивается вокруг своей оси, поскольку имеет несколько активных центров, которые последовательно взаимодействуют с соответствующими центрами на актиновом филаменте. Вращение головки приводит к увеличению упругой эластической тяги шейки поперечного мостика и увеличению напряжения. В каждый конкретный момент в процессе развития сокращения одна часть головок поперечных мостиков находится в соединении с актиновым филаментом, другая свободна, т. е. существует последовательность их взаимодействия с актиновым филаментом. Это обеспечивает плавность процесса сокращения. На четвертом и пятом этапах происходит хемомеханическое преобразование.
Последовательная реакция соединения и разъединения головок поперечных мостиков с актиновым филаментом приводит к скольжению тонких и толстых нитей относительно друг друга и уменьшению размеров саркомера и общей длины мышцы, что является шестым этапом. Совокупность описанных процессов составляет сущность теории скольжения нитей
Первоначально полагали, что ионы Са2+ служат кофактором АТФазной активности миозина. Дальнейшие исследования опровергли это предположение. У покоящейся мышцы актин и миозин практически не обладают АТФазной активностью. Присоединение головки миозина к актину приводит к тому, что головка приобретает АТФазную активность.
Гидролиз АТФ в АТФазном центре головки миозина сопровождается изменением конформации последней и переводом ее в новое, высокоэнергетическое состояние. Повторное присоединение миозиновой головки к новому центру на актиновом филаменте вновь приводит к вращению головки, которое обеспечивается запасенной в ней энергией. В каждом цикле соединения и разъединения головки миозина с актином расщепляется одна молекула АТФ на каждый мостик. Быстрота вращения определяется скоростью расщепления АТФ. Очевидно, что быстрые фазические волокна потребляют значительно больше АТФ в единицу времени и сохраняют меньше химической энергии во время тонической нагрузки, чем медленные волокна. Таким образом, в процессе хемомеханического преобразования АТФ обеспечивает разъединение головки миозина и актинового филамента и энергетику для дальнейшего взаимодействия головки миозина с другим участком актинового филамента. Эти реакции возможны при концентрации кальция выше 106М.
Описанные механизмы укорочения мышечного волокна позволяют предположить, что для расслабления в первую очередь необходимо понижение концентрации ионов Са2+. Экспериментально было доказано, что саркоплазматическая сеть имеет специальный механизм — кальциевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фосфатом, который образуется при гидролизе АТФ, а энергообеспечение работы кальциевого насоса также за счет энергии, образующейся при гидролизе АТФ. Таким образом, АТФ является вторым важнейшим фактором, абсолютно необходимым для процесса расслабления. Некоторое время после смерти мышцы остаются мягкими вследствие прекращения тонического влияния мотонейронов (см. главу 4). Затем концентрация АТФ снижается ниже критического уровня и возможность разъединения головки миозина с актиновым филаментом исчезает. Возникает явление трупного окоченения с выраженной ригидностью скелетных мышц.
Режимы работы мышц
Механическая работа (А), совершаемая мышцей, измеряется произведением поднимаемого веса (Р) на расстояние (h): А = Р * h кгм. При регистрации работы изолированной мышцы лягушки видно, что чем больше величина груза, тем меньше высота, на которую его поднимает мышца. Различают 3 режима работы мышцы: изотонический, изометрический и ауксотонический.
Изотонический режим (режим постоянного тонуса мышцы) наблюдается при отсутствии нагрузки на мышцу, когда мышца закреплена с одного конца и свободно сокращается. Напряжение в ней при этом не изменяется. Это происходит при раздражении изолированной мышцы лягушки, закрепленной одним концом на штативе. Так как при этих условиях Р = 0, то механическая работа мышцы также равна нулю (А = 0). В таком режиме работает в организме человека только одна мышца — мышца языка. (В современной литературе также встречается термин изотонический режим по отношению к такому сокращению мышцы с нагрузкой, при котором по мере изменения длины мышцы напряжение ее сохраняется неизменным, но в этом случае механическая работа мышцы не равна пулю, т. е. она совершает внешнюю работу).
Изометрический режим (режим постоянной длины мышцы) характеризуется напряжением мышцы в условиях, когда она закреплена с обоих концов или когда мышца не может поднять слишком большой груз. При этом h = 0 и, соответственно, механическая работа тоже равна нулю (А = 0). Этот режим наблюдается при сохранении заданной позы и при выполнении статической работы. В этом случае в мышечном волокне все равно происходят процессы возникновения и разрушения мостиков между актином и миозином, т. е. тратится энергия на эти процессы, но отсутствует механическая реакция перемещения нитей актина вдоль миозина. Физиологическая характеристика такой работы заключается в оценке величины нагрузки и длительности работы.
Ауксотонический режим (смешанный режим) характеризуется изменением длины и тонуса мышцы, при сокращении которой происходит перемещение груза. В этом случае совершается механическая работа мышцы (А= Р? h). Такой режим проявляется при выполнении динамической работы мышц даже при отсутствии внешнего груза, так как мышцы преодолевают силу тяжести, действующую на тело человека. Различают 2 разновидности этого режима работы мышц: преодолевающий (концентрический) и уступающий (эксцентрический) режим.
У позвоночных и человека три вида мышц: поперечнополосатые мышцы скелета, поперечнополосатая мышца сердца – миокард и гладкие мышцы, образуюцие стенки полых внутренних органов и сосудов.
Анатомической и функциональной единицей скелетных мышц является нейромоторная единица - двигательный нейрон и иннервируемая им группа мышечных волокон. Импульсы, посылаемые мотонейроном, приводят в действие все образующие ее мышечные волокна.
Скелетные мышцы состоят из большого количества мышечных волокон. Волокно поперечнополосатой мышцы имеет вытянутую форму, диаметр его от 10 до 100 мкм, длина волокна от нескольких сантиметров до 10-12 см. Мышечная клетка окружена тонкой мембраной – сарколеммой, содержит саркоплазму (протоплазму) и многочисленные ядра. Сократительной частью мышечного волокна являются длинные мышечные нити – миофибриллы, состоящие в основном из актина, проходящие внутри волокна от одного конца до другого, имеющие поперечную исчерченность. Миозин в гладких мышечных клетках находится в дисперсном состоянии, но содержит много белка, играющего важную роль в поддержании длительного тонического сокращения.
В период относительного покоя скелетные мышцы полностью не расслабляются и сохраняют умеренную степень напряжения, т.е. мышечный тонус.
Основные функции мышечной ткани:
двигательная – обеспечение движения
статическая – обеспечение фиксации, в том числе и в определенной позе
рецепторная – в мышцах имеются рецепторы, позволяющие воспринимать собственные движения
депонирующая – в мышцах запасаются вода и некоторые питательные вещества.
Физиологические свойства скелетных мышц:
Возбудимость. Ниже, чем возбудимость нервной ткани. Возбуждение распространяется вдоль мышечного волокна.
Проводимость. Меньше проводимости нервной ткани.
Рефрактерный период мышечной ткани более продолжителен, чем нервной ткани.
Лабильность мышечной ткани значительно ниже, чем нервной.
Сократимость – способность мышечного волокна изменять свою длину и степень напряжения в ответ на раздражение пороговой силы.
При изотоническом сокращении изменяется длина мышечного волокна без изменения тонуса. При изометрическом сокращении возрастает напряжение мышечного волокна без изменения его длины.
В зависимости от условий стимуляции и функционального состояния мышцы может возникнуть одиночное, слитное (тетаническое) сокращение или контрактура мышцы.
Одиночное мышечное сокращение. При раздражении мышцы одиночным импульсом тока возникает одиночное мышечное сокращение.
Амплитуда одиночного сокращения мышцы зависит от количества сократившихся в этот момент миофибрилл. Возбудимость отдельных групп волокон различна, поэтому пороговая сила тока вызывает сокращение лишь наиболее возбудимых мышечных волокон. Амплитуда такого сокращения минимальна. При увеличении силы раздражающего тока в процесс возбуждения вовлекаются и менее возбудимые группы мышечных волокон; амплитуда сокращений суммируется и растет до тех пор, пока в мышце не останется волокон, не охваченных процессом возбуждения. В этом случае регистрируется максимальная амплитуда сокращения, которая не увеличивается, несмотря на дальнейшее нарастание силы раздражающего тока.
Тетаническое сокращение. В естественных условиях к мышечным волокнам поступают не одиночные, а ряд нервных импульсов, на которые мышца отвечает длительным, тетаническим сокращением, или тетанусом. К тетаническому сокращению способны только скелетные мышцы. Гладкие мышцы и поперечнополосатая мышца сердца не способны к тетаническому сокращению из-за продолжительного рефрактерного периода.
Тетанус возникает вследствие суммации одиночных мышечных сокращений. Чтобы возник тетанус, необходимо действие повторных раздражений (или нервных импульсов) на мышцу еще до того, как закончится ее одиночное сокращение.
Если раздражающие импульсы сближены и каждый из них приходится на тот момент, когда мышца только начала расслабляться, но не успела еще полностью расслабиться, то возникает зубчатый тип сокращения (зубчатый тетанус).
Если раздражающие импульсы сближены настолько, что каждый последующий приходится на время, когда мышца еще не успела перейти к расслаблению от предыдущего раздражения, то есть происходит на высоте ее сокращения, то возникает длительное непрерывное сокращение, получившее название гладкого тетануса.
Гладкий тетанус – нормальное рабочее состояние скелетных мышц обусловливается поступлением из ЦНС нервных импульсов с частотой 40-50 в 1с.
Зубчатый тетанус возникает при частоте нервных импульсов до 30 в 1с. Если мышца получает 10-20 нервных импульсов в 1с, то она находится в состоянии мышечного тонуса, т.е. умеренной степени напряжения.
Утомление мышц. При длительном ритмическом раздражении в мышце развивается утомление. Признаками его являются снижение амплитуды сокращений, увеличение их латентных периодов, удлинение фазы расслабления и, наконец, отсутствие сокращений при продолжающемся раздражении.
Еще одна разновидность длительного сокращения мышц - контрактура. Она продолжается и при снятии раздражителя. Контрактура мышцы наступает при нарушении обмена веществ или изменении свойств сократительных белков мышечной ткани. Причинами контрактуры могут быть отравление некоторыми ядами и лекарственными средствами, нарушение обмена веществ, повышение температуры тела и другие факторы, приводящие к необратимым изменениям белков мышечной ткани.
Физиологические особенности гладких мышц.
Гладкие мышцы образуют стенки (мышечный слой) внутренних органов и кровеносных сосудов. В миофибриллах гладких мышц нет поперечной исчерченности. Это обусловлено хаотичным расположением сократительных белков. Волокна гладких мышц относительно короче.
Гладкие мышцы менее возбудимы, чем поперечнополосатые. Возбуждение по ним распространяется с небольшой скоростью – 2-15 см/с. Возбуждение в гладких мышцах может передаваться с одного волокна на другое, в отличие от нервных волокон и волокон поперечнополосатых мышц.
Сокращение гладкой мускулатуры происходит более медленно и длительно.
Рефрактерный период в гладких мышцах более продолжителен, чем в скелетных.
Важным свойством гладкой мышцы является ее большая пластичность, т.е. способность сохранять приданную растяжением длину без изменения напряжения. Данное свойство имеет существенное значение, так как некоторые органы брюшной полости (матка, мочевой пузырь, желчный пузырь) иногда значительно растягиваются.
Характерной особенностью гладких мышц является их способность к автоматической деятельности, которая обеспечивается нервными элементами, заложенными в стенках гладкомышечных органов.
Адекватным раздражителем для гладких мышц является их быстрое и сильное растяжение, что имеет большое значение для функционирования многих гладкомышечных органов (мочеточник, кишечник и другие полые органы)
Особенностью гладких мышц является также их высокая чувствительность к некоторым биологически активным веществам (ацетилхолин, адреналин, норадреналин, серотонин и др.).
Гладкие мышцы иннервируются симпатическими и парасимпатическими вегетативными нервами, которые, как правило, оказывают противоположное влияние на их функциональное состояние.
Основные свойства сердечной мышцы.
Стенка сердца состоит из 3 слоев. Средний слой (миокард) состоит из поперечнополосатой мышцы. Сердечная мышца, как и скелетные мышцы, обладает свойством возбудимости, способностью проводить возбуждение и сократимостью. К физиологическим особенностям сердечной мышцы относятся удлиненный рефрактерный период и автоматизм.
Возбудимость сердечной мышцы. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в сердечной мышце необходим более сильный раздражитель, чем для скелетной.
Проводимость. Возбуждение по волокнам сердечной мышцы проводится с меньшей скоростью, чем по волокнам скелетной мышцы.
Сократимость. Реакция сердечной мышцы не зависит от силы наносимых раздражений. Сердечная мышца максимально сокращается и на пороговое и на более сильное по величине раздражение.
Рефрактерный период. Сердце, в отличие от других возбудимых тканей, имеет значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в период ее активности. Благодаря этому сердечная мышца не способна к тетаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.
Автоматизм сердца. Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм. Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматизма.
Электромиография (от греч. mys, myos — мышца, grapho — записываю) — регистрация электрических потенциалов; скелетных мышц. Электромиографию используют как метод исследования нормальной и нарушенной функции двигательного аппарата человека и животных. Электромиография включает методики по изучению электрической активности мышц в состоянии покоя, при произвольных, непроизвольных и вызванных искусственными раздражениями сокращениях. С помощью электромиографии изучают функциональное состояние и функциональные особенности мышечных волокон, двигательных единиц, нервно-мышечной передачи, нервных стволов, сегментарного аппарата спинного мозга, а также надсегментарных структур; изучают координацию движений, выработку двигательного навыка при различных видах работы и спортивных упражнениях, перестройку работы пересаженных мышц, утомление. На основании электромиографии создан метод управления биотоками мышц, который нашел практическое применение при управлении так называемыми биоэлектрическими протезами (см. Протезирование). Электромиограмма — кривая, получаемая на фотобумаге, фотопленке или на бумаге при регистрации электрических потенциалов скелетных мышц. Она может быть записана с помощью специального прибора, получившего название электромиограф, или других приборов, используемых для регистрации биопотенциалов. Прибор, как правило, имеет не менее двух каналов записи. Каждый канал включает в себя отводящие электроды, усилитель биопотенциалов и регистрирующее устройство. В большинство электромиографов предусматривается устройство для зрительного и слухового контроля (рис. 1).
Рис. 1. Схема устройства прибора для электромиографии.
Основным источником колебаний электрического потенциала мышц является распространяющийся по мышечным волокнам процесс возбуждения. Однако, поскольку электромиограмма регистрируется в области двигательных точек (см. Электродиагностика), часть электрического потенциала составляет потенциал, возникающий при возбуждении концевых пластин. Электрические потенциалы скелетных мышц можно отводить внутриклеточно или внеклеточно. Внутриклеточное отведение электрических потенциалов отдельных мышечных волокон у человека позволяет определять те характеристики, которые раньше изучались при микроэлектродных исследованиях на животных или препаратах: величины мембранных потенциалов мышечных волокон, деполяризацию и гиперполяризацию мембран и т. п. (см. Биоэлектрические явления). Регистрацию внутриклеточных потенциалов скелетных мышц ряд авторов называет внутриклеточной электромиографией. Внеклеточное отведение электрических потенциалов проводят двумя методами: 1) при помощи электродов с относительно малой отводящей поверхностью (сотые доли квадратного миллиметра), погружаемых в мышцу посредством игл (рис. 2, 1—3); при этом во всех случаях, кроме униполярного отведения, оба отводящих электрода находятся на небольшом расстоянии друг от друга (как правило, менее 0,5 мм); 2) при помощи электродов с относительно большой отводящей поверхностью (30— 100 мм2), обычно помещенных на кожу над мышцей на сравнительно большом расстоянии друг от друга (1—2 см) (рис. 2, 4—6). В первом случае принято говорить о «локальном», во втором — о «глобальном» отведении. «Локальное» отведение позволяет изучать электрические потенциалы, возникающие в небольшом объеме мышечной ткани: потенциалы отдельных двигательных единиц, суммарные потенциалы небольшого количества двигательных единиц, в условиях патологии — потенциалы отдельных мышечных волокон. Основным объектом изучения является двигательная единица. Это понятие первоначально означало совокупность мышечных волокон, иннервируемых одним мотоневроном.
В основе современного представления о структуре и функции ЦНС лежит нейронная теория.
Нервная система построена из двух типов клеток: нервных и глиальных, причем число последних в 8 - 9 раз превышает число нервных. Однако, именно нейроны обеспечивают все многообразие процессов, связанных с передачей и обработкой информации.
Нейрон, нервная клетка, является структурно-функциональной единицей ЦНС. Отдельные нейроны, в отличие от других клеток организма, действующих изолированно, «работают» как единое целое. Их функции состоит в передаче информации (в форме сигналов) от одного участка нервной системы к другому, в обмене информацией между нервной системой и различными участками тела. При этом передающие и принимающие нейроны объединены в нервные сети и цепи.
В нервных клетках происходят сложнейшие процессы обработки информации. С их помощью формируются ответные реакции организма (рефлексы) на внешние и внутренние раздражения.
Нейроны обладают рядом признаков, общих для всех клеток тела. Независимо от своего местонахождения и функций, любой нейрон, как всякая другая клетка, имеет плазматическую мембрану, определяющую границы индивидуальной клетки. Когда нейрон взаимодействует с другими нейронами, или улавливает изменения в локальной среде, он делает это с помощью мембраны и заключенных в ней молекулярных механизмов. Стоит отметить, что мембрана нейрона обладает значительно более высокой прочностью, чем другие клетки организма.
Все, что находится внутри плазматической мембраны (кроме ядра), называется цитоплазмой. Здесь содержатся цитоплазматические органеллы, необходимые для существования нейрона и выполнения им своей работы. Митохондрии обеспечивают клетку энергией, используя сахар и кислород для синтеза специальных высокоэнергетических молекул, расходуемых клеткой по мере надобности. Микротрубочки - тонкие опорные структуры - помогают нейрону сохранять определенную форму. Сеть внутренних мембранных канальцев, с помощью которых клетка распределяет химические вещества, необходимые для ее функционирования, называется эндоплазматическим ретикулумом.
Существует два вида эндоплазматического ретикулума: «шероховатый» и «гладкий». Мембраны шероховатого (гранулярного) усеяны рибосомами, необходимыми клеткам для синтеза секретируемых ею белковых веществ. Обилие элементов «шероховатого» ретикулума в нейронах характеризует их как клетки с весьма интенсивной деятельностью. Другой вид плазматического ретикулума - гладкий, называемый также аппаратом Гольджи, «упаковывает» вещества, синтезированные клеткой в специальные «мешочки», построенные из мембран гладкого ретикулума. Задача этой органеллы нейрона заключается в переносе секретов к поверхности клетки.
В центре цитоплазмы находится ядро, в котором, как и у всех клеток с ядрами, содержится генетическая информация, закодированная в химической структуре генов. В соответствие с этой информацией полностью сформированная клетка синтезирует специфические вещества, которые определяют форму, химизм и функцию этой клетки. Однако, в отличие от большинства других клеток тела, зрелые нейроны не могут делиться. Поэтому генетически обусловленные химические элементы любого нейрона должны обеспечивать сохранение и изменение его функций на протяжении всей его жизни. В крупных нейронах 1/3-1/4 величины их тела составляет ядро. Входящие в его состав ядрышки участвуют в снабжении клетки рибонуклеиновыми кислотами и белками (в мотонейронах, например, при двигательной активности животного ядрышки значительно увеличиваются в размерах).
Вместе с тем, нейроны в отличие от других клеток организма, имеют существенную особенность, они, кроме тела (сомы) снабжены отростками Многочисленные короткие древовидно разветвленные отростки - дендриты (в переводе с греческого - дерево) служат своеобразными входами нейрона, через которые сигналы поступают в нервную клетку. Они имеют шероховатую поверхность, создаваемую небольшими утолщениями - шипиками, словно бусинками, нанизанными на дендрит. Благодаря этому увеличивается поверхность нейрона и максимально повышается сбор информации.
Выходом нейрона является отходящий от гена длинный, гладкий отросток - аксон (от греческого axis - ось), который передает нервные импульсы дальше другой нервной клетке или рабочему органу (Рис.1). Аксоны многих нейронов покрыты миелиновой оболочкой. Она образована швановскими клетками, многократно (до 10 и более слоев) «обернутыми» подобно изоляционной ленте вокруг ствола аксона. Однако, муфты швановских клеток, надетые на аксон, не соприкасаются друг с другом. Между ними остаются узкие щели - перехваты Ранвье. Только здесь нервное волокно непосредственно соприкасается с внеклеточной жидкостью. Поэтому, в нервной системе млекопитающих волна распространяющегося нервного импульса бежит не плавно, а движется скачками (сальтаторно) от одного перехвата к другому, что весьма ускоряет процесс распространения импульса.
Что же касается начальной части аксона в месте выхода его из тела клетки (область «аксонного холмика»), то она лишена миелиновой оболочки. Мембране этой немиелиновой части нейрона - так называемого начального сегмента обладает высокой возбудимостью. Поэтому ее называют пусковой зоной, так как именно отсюда начинается возбуждение нейрона.
Нет необходимости говорить о том, что даже для внутримозговых связей нужны очень длинные отростки, не говоря уже об аксонах, выходящих за пределы ЦНС - к мышцам, железам, внутренним органам. Собранные в пучки, они образуют нервы.
Если нейрон образует выходные связи с большим членом других клеток, то его аксон может многократно ветвиться, чтобы сигналы могли дойти до каждой из них, количество таких разветвлений (термиполей) огромно и колеблется от 1000 до 10000 и более. Кроме того, аксон способен отдавать дополнительные ветви - коллатерали, по которым возбуждение уходит далеко в сторону от магистрального пути. Отростки, разобщенные с телом клетки, долго существовать не могут и погибают. Тело клетки, напротив, регенерируют их. Конечно, это относится только к центральной части отростка. Иногда процессы регенерации отростков идут с огромной скоростью: до 30 микрон в минуту.
Следует отметить, что именно из-за наличия отростков нейроны, как клетки, были открыты позже других клеток организма человека и животных. Это и понятно, так как в поле зрения микроскопа нейрон со всеми своими отростками поместиться не мог. Поэтому, первоначально самим клеткам не придавали должного значения, рассматривая их как утолщение среди множества отростков.
Форма нервной клетки, ее размеры и расположение отростков разнообразны и зависят от функционального назначения нейрона (Рис.2).
Каждый отдельный нейрон уникален и неравноценен себе подобным, в отличие от других клеток организма. Величина нейронов весьма вариабельна: самые крупные в десятки и сотни раз больше самых мелких. К примеру, размеры поперечника зернистых клеток мозжечка составляют 7,0 микрон, а моторных нейронов спинного мозга - 70,0.
Плотность расположений нейронов в некоторых отделах ЦНС очень велика. Так, в коре больших полушарий она равна 40000 клеток в 1 мм3. На вопрос, сколько же нейронов содержит мозг человека и высокоорганизованных животных никто точно ответить не может, но считается, что их количество измеряется приблизительно десятками миллиардов.
Безмиелиновые нервные волокна - один слой швановских клеток, между ними - щелевидные пространства. Клеточная мембрана на всем протяжении контактирует с окружающей средой. При нанесении раздражения возбуждение возникает в месте действия раздражителя. Безмиелиновые нервные волокна обладают электрогенными свойствами (способностью генерировать нервные импульсы) на всем протяжении.
Миелиновые нервные волокна - покрыты слоями шванновских клеток, которые местами образуют перехваты Ранвье (участки без миелина) через каждые 1 мм. Продолжительность перехвата Ранвье 1 мкм. Миелиновая оболочка выполняет трофическую и изолирующую функции (высокое сопротивление). Участки, покрытые миелином не обладают электрогенными свойствами. Ими обладают перехваты Ранвье. Возбуждение возникает в ближайшем к месту действия раздражителя перехвата Ранвье. В перехватах Ранвье высокая плотность Nа-каналов, поэтому в каждом перехвате Ранвье происходит усиление нервных импульсов.
Перехваты Ранвье выполняют функцию ретрансляторов (генерируют и усиливают нервные импульсы).
Механизм проведения возбуждения по нервному волокну
1885 г. - Л. Герман - между возбужденными и невозбужденными участками нервного волокна возникают круговые токи.
При действии раздражителя имеется разность потенциалов между наружной и внутренней поверхностями ткани (участки несущие различные заряды). Между этими участками возникает электрический ток (движение ионов Nа+). Внутри нервного волокна возникает ток от положительного полюса к отрицательному полюсу, т. е. ток направлен от возбужденного участка к невозбужденному. Этот ток выходит через невозбужденный участок и вызывает его перезарядку. На наружной поверхности нервного волокна ток идет от невозбужденного участка к возбужденному. Этот ток не изменяет состояние возбужденного участка, т. к. он находится в состоянии рефрактерности.
Доказательство наличия круговых токов: нервное волокно помещают в раствор NaCl и регистрируют скорость проведения возбуждения. Затем нервное волокно помещают в масло (повышается сопротивление) - скорость проведения уменьшается на 30 %. После этого нервное волокно оставляют на воздухе - скорость проведения возбуждения уменьшается на 50 %.
Особенности проведения возбуждения по миелиновым и безмиелиновым нервным волокнам:
1) миелиновые волокна - имеют оболочку обладающую высоким сопротивлением, электрогенные свойства только в перехватах Ранвье. Под действием раздражителя возбуждение возникает в ближайшем перехвате Ранвье. Соседний перехват в состоянии поляризации. Возникающий ток вызывает деполяризацию соседнего перехвата. В перехватах Ранвье высокая плотность Nа-каналов, поэтому в каждом следующем перехвате возникает чуть больший (по амплитуде) потенциал действия, за счет этого возбуждение распространяется без декремента и может перескакивать через несколько перехватов. Это сальтаторная теория Тасаки. Доказательство теории - в нервное волокно вводили препараты, блокирующие несколько перехватов, но проведение возбуждения регистрировалось и после этого. Это высоко надежный и выгодный способ, т. к. устраняются небольшие повреждения, увеличивается скорость проведения возбуждения, уменьшаются энергетические затраты;
2) безмиелиновые волокна - поверхность обладает электрогенными свойствами на всем протяжении. Поэтому малые круговые токи возникают на расстоянии в несколько микрометров. Возбуждение имеет вид постоянно бегущей волны. Этот способ менее выгоден: большие затраты энергии (на работу Nа-К-насоса), меньшая скорость проведения возбуждения.
Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые.
Процессы метаболизма в безмиелиновых волокнах не обеспечивают быструю компенсацию расхода энергии. Распространение возбуждения будет идти с постепенным затуханием – с декрементом. Декре-ментное поведение возбуждения характерно для низкоорганизованной нервной системы. Возбуждение распространяется за счет малых круговых токов, которые возникают внутрь волокна или в окружающую его жидкость. Между возбужденными и невозбужденными участками возникает разность потенциалов, которая способствует возникновению круговых токов. Ток будет распространяться от «+» заряда к«-». В месте выхода кругового тока повышается проницаемость плазматической мемб-раны для ионов Na, в результате чего происходит деполяризация мембраны. Между вновь возбужденным участком и соседним невозбужденным вновь возникает разность потенциалов, что приводит к возникновению круговых токов. Возбуждение постепенно охватывает соседние участки осевого цилиндра и так распространяется до конца аксона.
В миелиновых волокнах благодаря совершенству метаболизма возбуждение проходит, не затухая, без декремента. За счет большого радиуса нервного волокна, обусловленного миелиновой оболочкой, электрический ток может входить и выходить из волокна только в области перехвата. При нанесения раздражения возникает деполяризация в области перехвата А, соседний перехват В в это время поляризован. Между перехватами возникает разность потенциалов, и появляются круговые токи. За счет круговых токов возбуждаются другие перехваты, при этом возбуждение распространяется сальтаторно, скачкообразно от одного перехвата к другому.
Существует три закона проведения раздражения по нервному волокну.
Закон анатомо-физиологической целостности.
Проведение импульсов по нервному волокну возможно лишь в том случае, если не нарушена его целостность.
Закон изолированного проведения возбуждения.
Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмя-котных нервных волокнах.
В периферических нервных волокнах возбуждение передается только вдоль нервного волокна, но не передается на соседние, которые находятся в одном и том же нервном стволе.
В мякотных нервных волокнах роль изолятора выполняет мие-линовая оболочка. За счет миелина увеличивается удельное сопротивление и происходит уменьшение электрической емкости оболочки.
В безмякотных нервных волокнах возбуждение передается изолированно.
Закон двустороннего проведения возбуждения.
Нервное волокно проводит нервные импульсы в двух направлениях – центростремительно и цен-тробежно.
Учение о парабиозе, созданное Н. Е. Введенским, является продолжением учения о лабильности, о котором говорилось раньше. Парабиоз (в пер.: “para” - около, “bio” - жизнь) – это состояние на грани жизни и гибли ткани, возникающее при воздействии на нее токсических веществ таких как наркотиков, фенола, формалина, различных спиртов, щелочей и других, а также длительного действия электрического тока. Учение о парабиозе связано с выяснением механизмов торможения, которое лежит в основе жизнедеятельности организма (И. П. Павлов эту проблему называл “проклятым вопросом физиологии”).
Как известно, ткани могут находиться в двух функциональных состояниях - торможения и возбуждения. Возбуждение это активное состояние ткани, сопровождающееся деятельностью какого-либо органа или системы. Торможение - это также активное состояние ткани, но характеризующееся угнетением деятельности какого-либо органа или системы организма. По мнению Введенского, в организме имеет место один биологический процесс, который имеет две стороны - торможение и возбуждение, что доказывает учение о парабиозе.
Классические опыты Введенского при изучении парабиоза проводились на нервно-мышечном препарате. При этом использовалась пара электродов, наложенных на нерв, между которыми помещалась ватка, смоченная KCl (калийный парабиоз). При развитии парабиоза выявлялись четыре его фазы.
1. Фаза кратковременного повышения возбудимости. Редко улавливается и заключается в том, что под действием подпорогового раздражителя мышца сокращается.
2. Фаза уравнительная (трансформации). Проявляется в том, что на частые и редкие стимулы мышца отвечает одинаковым по величине сокращением. Выравнивание силы мышечных эффектов происходит, по данным Введенского, за счет парабиотического участка, в котором снижается лабильность под влиянием KСl. Так, если лабильность в парабиотическом участке снизилась до 50 им/с, то такую частоту он пропускает, в то время, как более частые сигналы задерживаются в парабиотическом участке, т. к. часть из них попадает в период рефрактерности, который создается предыдущим импульсом и в связи с этим не проявляет своего действия.
3. Парадоксальная фаза. Характеризуется тем, что при действии частых стимулов наблюдается слабый сократитель
Дата добавления: 2015-05-19 | Просмотры: 2142 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|