Глава 4. НЕРВНАЯ РЕГУЛЯЦИЯ ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ. Методы исследования функций центральной нервной системы
МЕХАНИЗМЫ ДЕЯТЕЛЬНОСТИ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ
Методы исследования функций центральной нервной системы
Функции нервной системы изучают с использованием традиционных классических для общей физиологии методов и специальных методических подходов, призванных выявить специфические функции нервных образований, выполняющих роль главной управляющей и информационной системы в организме. В соответствии с двумя принципиально различными методическими подходами к изучению физиологических функций организма различают методы экспериментальной и теоретической нейрофизиологии.
К числу экспериментальных методов классической физиологии относятся приемы, направленные на активацию, или стимуляцию, подавление, или угнетение, функции данного нервного образования. Способы активирования изучаемого органа сводятся к раздражению его адекватными (или неадекватными) стимулами. Адекватное раздражение достигается специфическим раздражением соответствующих рецептивных входов рефлексов либо электрическим раздражением проводникового или центрального отдела рефлекторной дуги, имитирующим нервные импульсы. Среди неадекватных стимулов наиболее распространенными являются раздражение различными химическими веществами и градуируемое раздражение электрическим током.
Подавление функции вплоть до полного выключения достигается частичным или полным удалением (экстирпация), разрушением изучаемого нервного образования, кратковременным блокированием передачи возбуждения под действием химического вещества, холодового фактора или анода постоянного тока (анэлектротон, распространяющаяся депрессия), денервацией органа.
Развитие и совершенствование электронной и усилительной техники значительно повышают возможности метода регистрации и анализа электрических проявлений деятельности нервных структур. Регистрация электрических потенциалов головного мозга (электроэнцефалография) с последующим автоматизированным анализом с помощью средств вычислительной техники становится одним из важнейших методов исследования в нейрофизиологии мозга. Развитие микротехники отведения электрических потенциалов отдельных нервных клеток или даже частей клетки (микроэлектродная техника) за последние два-три десятилетия существенно обогатило ценными экспериментальными фактами физиологию мозга.
При изучении биофизических аспектов деятельности нервных клеток и исследовании нейрогуморальных регуляторных систем, включая гематоэнцефалический барьер, цереброспинальную жидкость, широко используются радиоизотопные методы.
Классический условнорефлекторный метод изучения функции коры большого мозга в современной нейрофизиологии успешно применяется в комплексном анализе механизмов обучения, становления и развития адаптивного поведения в сочетании с методами электроэнцефалографии, электронейронографии, нейро- и гистохимии, психофизиологии, способствуя более полному представлению физиологической сущности протекающих в мозге процессов.
В познании механизмов работы мозга в последнее время возрастает роль методов теоретической физиологии, в частности методов моделирования (физического, математического, концептуального). Под моделью обычно понимают искусственно созданный механизм, имеющий определенное подобие с данным рассматриваемым механизмом. Модель как исследовательский инструмент отражает наиболее существенные черты моделируемого объекта, не перегружая его подробными деталями, тем самым несколько упрощая объект исследования. Одним из постулатов теоретической нейрофизиологии является утверждение о сходстве по аналогии. Два механизма считаются аналогичными, если органы, соответствующие один другому, выполняют одну и ту же функцию. Из аналогии двух механизмов делается заключение о том, что функции одного механизма присущи и другому, у которого наличие таких функций экспериментально еще не установлено.
В системе научного познания психофизиологической сущности деятельности мозга трудно переоценить роль такого метода теоретической нейрофизиологии, как выдвижение, обоснование и проверка, верификация рабочей гипотезы. Практически использование любого метода физиологического исследования неразрывно связано с выдвижением и разработкой гипотезы — некоторого предположения, являющегося логическим развитием системы суждений и умозаключений, призванных объяснить имеющийся материал наблюдений и экспериментов. С учетом трудность, порой и недопустимость прямых экспериментальных вмешательств в структуры мозга человека, становится понятной чрезвычайно важная роль теоретического метода в физиологии мозга.
МЕХАНИЗМЫ ДЕЯТЕЛЬНОСТИ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ
Рефлекторный принцип регуляции функций
Основное положение рефлекторной теории заключается в утверждении, что деятельность организма есть закономерная рефлекторная реакция на стимул. Узловым моментом развития рефлекторной теории следует считать классический труд И. М. Сеченова (1863) «Рефлексы головного мозга», в котором впервые был провозглашен тезис о том, что все виды сознательной и бессознательной жизни человека представляют собой рефлекторные реакции. Рефлекс как универсальная форма взаимодействия организма и среды есть реакция организма, возникающая на раздражение рецепторов и осуществляемая с участием центральной нервной системы.
В естественных условиях рефлекторная реакция происходит при пороговом, надпороговом раздражении входа рефлекторной дуги — рецептивного поля данного рефлекса. Рецептивным полем называется определенный участок воспринимающей чувствительной поверхности организма с расположенными здесь рецепторными клетками, раздражение которых инициирует, запускает рефлекторную реакцию. Рецептивные поля разных рефлексов имеют определенную локализацию, рецепторные клетки — соответствующую специализацию для оптимального восприятия адекватных раздражителей (например, фоторецепторы располагаются в сетчатке; волосковые слуховые рецепторы — в спиральном (кортиевом) органе; проприорецепторы — в мышцах, в сухожилиях, в суставных полостях; вкусовые рецепторы на поверхности языка; обонятельные — в слизистой оболочке носовых ходов; болевые, температурные, тактильные рецепторы в коже и т. д.
Структурной основой рефлекса является рефлекторная дуга — последовательно соединенная цепочка нервных клеток, обеспечивающая осуществление реакции, или ответа, на раздражение. Рефлекторная дуга состоит из афферентного, центрального и эфферентного звеньев, связанных между собой синаптическими соединениями (рис. 4.1). Афферентная часть дуги начинается рецепторными образованиями, назначение которых заключается в трансформации энергии внешних раздражений в энергию нервного импульса, поступающего по афферентному звену дуги рефлекса в центральную нервную систему.
В зависимости от сложности структуры рефлекторной дуги различают моно- и полисинаптические рефлексы. В простейшем случае импульсы, поступающие в центральные нервные структуры по афферентным путям, переключаются непосредственно на эфферентную нервную клетку, т. е. в системе рефлекторной дуги имеется одно синаптическое соединение. Такая рефлекторная дуга называется моносинаптической (например, рефлекторная дуга сухожильного рефлекса в ответ на растяжение). Наличие в структуре рефлекторной дуги двух и более синаптических переключений (т. е. три и более нейронов), позволяет характеризовать ее как полисинаптическую.
Объяснение физиологических механизмов обучения, приобретенного навыка, коррекции выполненного ответа на основе принципа рефлекторной реакции неверно, неточно и потребовало существенного пересмотра классической схемы рефлекторной реакции, определяемой простой прямой связью: стимул à нервный центр à реакция.
Представление о рефлекторной реакции как о целесообразном ответе организма диктует необходимость дополнить рефлекторную дугу еще одним звеном — петлей обратной связи, призванной установить связь между реализованным результатом рефлекторной реакции и нервным центром, выдающим исполнительные команды. Обратная связь трансформирует открытую рефлекторную дугу в закрытую. Она может быть реализована разными способами: от исполнительной структуры к нервному центру (промежуточному или эфферентному двигательному нейрону), например, через возвратную аксонную коллатераль пирамидного нейрона коры больших полушарий или двигательной моторной клетки переднего рога спинного мозга. Обратная связь может обеспечиваться и нервными волокнами, поступающими к рецепторным структурам и управляющими чувствительностью рецепторных афферентных структур анализатора. Такая структура рефлекторной дуги превращает ее в самонастраивающийся нервный контур регуляции физиологической функции, совершенствуя рефлекторную реакцию и, в целом, оптимизируя поведение организма.
Классификации рефлексов. Существуют различные классификации рефлексов: по способам их вызывания, особенностям рецепторов, центральным нервным структурам их обеспечения, биологическому значению, сложности нейронной структуры рефлекторной дуги и т. д.
По способу вызывания различают безусловные рефлексы (категория рефлекторных реакций, передаваемых по наследству) и условные рефлексы (рефлекторные реакции, приобретаемые на протяжении индивидуальной жизни организма).
Различают экстероцептивные рефлексы — рефлекторные реакции, инициируемые раздражением многочисленных экстерорецепторов (болевые, температурные, тактильные и т. д.), интероцептивные рефлексы (рефлекторные реакции, запускаемые раздражением интероцепторов: хемо-, баро-, осморецепторов и т. д.), проприоцептивные рефлексы (рефлекторные реакции, осуществляемые в ответ на раздражение проприорецепторов мышц, сухожилий, суставных поверхностей и т. д.).
В зависимости от уровня активации части мозга дифференцируют спинномозговые, бульварные, мезенцефальные, диэнцефальные, кортикальные рефлекторные реакции.
По биологическому назначению рефлексы делят на пищевые, оборонительные, половые и т. д.
С учетом уровня эволюционного развития, совершенствования сложности нервного субстрата, обеспечивающего соответствующую рефлекторную реакцию, физиологического значения, уровня интегративной деятельности организма выделяют шесть основных видов рефлексов, или уровней рефлекторных реакций (А. Б. Коган):
Элементарные безусловные рефлексы, представлены простыми рефлекторными реакциями, осуществляемыми на уровне отдельных сегментов спинного мозга. Они имеют местное значение, вызываются локальным раздражением рецепторов данного сегмента тела и проявляются в виде локальных сегментарных сокращений поперечнополосатой мускулатуры. Элементарные безусловные рефлексы осуществляются по жестко детерминированным программам и имеют четкую определенную структурную основу в виде сегментарного аппарата спинного мозга, в результате такие рефлекторные реакции отличаются высокой степенью автоматизма и стереотипности. Функциональная роль этой категории рефлексов заключается в обеспечении простейших приспособительных реакций к внешним воздействиям местного значения, а также в приспособительных изменениях отдельных внутренних органов.
Координационные безусловные рефлексы представляют собой согласованные акты локомоторной деятельности или комплексные реакции вегетативных функциональных объединений внутренних органов. Эти рефлексы также вызываются раздражением определенных групп внешних или внутренних рецепторов, однако их эффект не ограничивается локальной реакцией путем последующей активации широкого класса экстеро-, интеро- и проприорецепторов, а формирует сложные координационные акты сокращения и расслабления, возбуждения или торможения деятельности ряда внутренних органов.
В физиологических механизмах реализации рефлекторных реакций этого типа значительное место занимает принцип обратной связи, обеспечиваемый соответствующими спинномозговыми структурами и осуществляющий антагонистическую, реципрокную иннервацию мышц-синергистов и антагонистов. Функциональное назначение координационных безусловных рефлексов — формирование на базе локальных элементарных безусловных рефлексов целостных, целенаправленных локомоторных актов или гомеостатических систем организма.
Интегративные безусловные рефлексы представляют собой дальнейший шаг в интеграции отдельных безусловных рефлексов, осуществляющих сложные двигательные локомоторные акты организма в тесной связи с вегетативным обеспечением, формируя тем самым комплексные поведенческие акты, имеющие определенное биологическое значение. Рефлекторные реакции этого типа инициируются такими биологически важными стимулами, как пищевые, болевые раздражители. Определяющим на входе этих рефлекторных актов становятся не физико-химические свойства стимулов, а в первую очередь их биологическое значение. Интегративные безусловные рефлексы всегда носят целостный системный характер, включая достаточно выраженные соматические и вегетативные компоненты. Их реализация оказывается весьма пластичной, тесно связанной со многими сильно развитыми проприоцептивными обратными связями, обеспечивающими точную коррекцию выполняемого сложного поведенческого акта в соответствии с изменениями в состоянии организма. Пример такой реакции — ориентировочная реакция. Биологическое значение последней заключается в перестройке организма, которая обеспечивает оптимальную подготовку к восприятию и быстрому анализу нового неизвестного сигнала в целях организации рационального ответа. Интегративные безусловные рефлексы требуют для своей реализации надсегментарных механизмов нервно-рефлекторной регуляции поведения организма. Эти рефлексы означают переход от сравнительно простых безусловных рефлексов к поведенческим актам.
Сложнейшие безусловные рефлексы (инстинкты) представляют собой видовые стереотипы поведения, организующиеся на базе интегративных рефлексов по генетически заданной программе. В качестве запускающих стереотипные поведенческие реакции раздражений выступают стимулы, имеющие отношение к питанию, защите, размножению и другим биологически важным потребностям организма.
Сложнейшие безусловные рефлексы образованы последовательными интегративными реакциями, построенными таким образом, что завершение одной реакции становится началом следующей. Адаптивность инстинктов усиливается благодаря наслоению на сложнейшие безусловные рефлексы условных, приобретаемых на ранних этапах онтогенеза. Нервный субстрат, ответственный за физиологические механизмы инстинктивного поведения, представляет иерархическую систему соподчиненных центров интегративных, координационных и элементарных безусловных рефлексов. Жесткая предопределенность инстинктивных реакций обусловлена этапной последовательностью актов инстинктивного поведения, ограничивающей сферу функционирования обратной связи от последующего этапа к предыдущему, уже реализованному. Инстинктивные реакции отражают исторический опыт вида. В субъективной сфере человека сложнейшие безусловные рефлексы проявляются в виде последовательных влечений и желаний, в сложной игре эмоций.
Элементарные условные рефлексы проявляются в интегративных реакциях, вызываемых ранее индифферентными раздражителями, приобретающими сигнальное значение в результате жизненного опыта или подкрепления их безусловными стимулами (сигналами), имеющими биологическое значение. Основным принципиальным отличием этой категории рефлекторных реакций является то, что они образуются в процессе индивидуальной жизни. Условнорефлекторные реакции образуются, усложняются, видоизменяются на протяжении всей жизни; наиболее простые из них формируются в раннем возрасте. Нервным субстратом, отвечающим за осуществление условнорефлекторных реакций, является филогенетически наиболее молодая структура головного мозга — кора больших полушарий. Многоканальность и взаимозаменяемость путей реализации условнорефлекторного механизма лежат в основе высокой пластичности и надежности условнорефлекторных реакций. В системе рефлекторных реакций появление условного рефлекса означает качественно новый скачок в приспособительном поведении высших животных и человека. Условнорефлекторные реакции дают возможность организму заблаговременно отвечать на приближающиеся жизненно важные ситуации. В психической сфере деятельности человека условные рефлексы закладывают начало ассоциативному способу мышления.
Сложные формы высшей нервной деятельности представлены психическими реакциями, возникающими на основе интеграции элементарных условных рефлексов и аналитико-синтетических механизмов абстрагирования. Абстрагирование от конкретного содержания безусловных подкрепляющих раздражителей обеспечивает возможность более полного и целостного восприятия окружающего мира, адекватного прогнозирования и программирования поведения. В качестве вызывающих подобные реакции стимулов обычно выступают сложные комплексные раздражители. Часто такие рефлекторные реакции имеют усеченную рефлекторную дугу (отсутствует эфферентное звено рефлекторной дуги). Сложные формы высшей нервной деятельности оказываются связанными с синтетическими процессами, обеспечивающими целостные субъективные образы внешнего мира, целенаправленные программы поведения, различные проявления абстрактной мыслительной деятельности человека (психонервная деятельность, рассудочное мышление, функции второй сигнальной системы).
МЕХАНИЗМЫ ДЕЯТЕЛЬНОСТИ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ
Торможение в центральной нервной системе
Интегративная и координационная деятельность центральных нервных образований осуществляется при обязательном участии тормозных процессов.
Торможение в центральной нервной системе — активный процесс, проявляющийся внешне в подавлении или в ослаблении процесса возбуждения и характеризующийся определенной интенсивностью и длительностью.
Торможение в норме неразрывно связано с возбуждением, является его производным, сопутствует возбудительному процессу, ограничивая и препятствуя чрезмерному распространению последнего. При этом торможение часто ограничивает возбуждение и вместе с ним формирует сложную мозаику активированных и заторможенных зон в центральных нервных структурах. Формирующий эффект тормозного процесса развивается в пространстве и во времени. Торможение — врожденный процесс, постоянно совершенствующийся в течение индивидуальной жизни организма.
При значительной силе фактора, вызвавшего торможение, оно может распространяться на значительное пространство, вовлекая в тормозной процесс большие популяции нервных клеток.
История развития учения о тормозных процессах в центральной нервной системе начинается с открытия И. М. Сеченовым эффекта центрального торможения (химическое раздражение зрительных бугров тормозит простые спинномозговые безусловные реакции). Вначале предположение о существовании специфических тормозных нейронов, обладающих способностью оказывать тормозные влияния на другие нейроны, с которыми имеются синаптические контакты, диктовалось логической необходимостью для объяснения сложных форм координационной деятельности центральных нервных образований. Впоследствии это предположение нашло прямое экспериментальное подтверждение (Экклс, Реншоу), когда было показано существование специальных вставочных нейронов, имеющих синаптические контакты с двигательными нейронами. Активация этих вставочных нейронов закономерно приводила к торможению двигательных нейронов. В зависимости от нейронного механизма, способа вызывания тормозного процесса в ЦНС различают несколько видов торможения: постсинаптическое, пресинаптическое, пессимальное.
Постсиналтическое торможение — основной вид торможения, развивающийся в постсинаптической мембране аксосоматических и аксодендритических синапсов под влиянием активации тормозных нейронов, в концевых разветвлениях аксонных отростков которых освобождается и поступает в синаптическую щель тормозной медиатор. Тормозной эффект таких нейронов обусловливается специфической природой медиатора — химического переносчика сигнала с одной клетки на другую. Наиболее распространенным тормозным медиатором является гамма-аминомасляная кислота (ГАМК). Химическое действие ГАМК вызывает в постсинаптической мембране эффект гиперполяризации в виде тормозных постсинаптических потенциалов (ТПСП), пространственно-временная суммация которых повышает уровень мембранного потенциала (гиперполяризация), приводит к урежению или полному прекращению генерации распространяющихся ПД.
Возвратным торможением называется угнетение (подавление) активности нейрона, вызываемое возвратной коллатералью аксона нервной клетки. Так, мотонейрон переднего рога спинного мозга прежде чем покинуть спинной мозг дает боковую (возвратную) ветвь, которая возвращается назад и заканчивается на тормозных нейронах (клетки Реншоу). Аксон последней заканчивается на мотонейронах, оказывая на них тормозное действие.
Пресинаптическое торможение развертывается в аксоаксональных синапсах, блокируя распространение возбуждения по аксону. Пресинаптическое торможение часто выявляется в структурах мозгового ствола, в спинном мозге
Пессимальное торможение представляет собой вид торможения центральных нейронов. Оно наступает при высокой частоте раздражения. В первый момент возникает высокая частота ответного возбуждения. Через некоторое время стимулируемый центральный нейрон, работая в таком режиме, переходит в состояние торможения.
Дата добавления: 2015-05-19 | Просмотры: 885 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|