АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Клетка как осмотическая система. Осмос. Уравнение осматического давления

Растительная клетка представляет собой осмотическую систему. Пектоцеллюлозная оболочка хорошо проницаема как для воды, так и для растворенных веществ. Однако плазмалемма и тонопласт обладают избирательной проницаемостью, легко пропускают воду и менее проницаемы, а в некоторых случаях непроницаемы для растворенных веществ. В этом можно убедиться, рассмотрев явления плазмолиза и тургора. Если поместить клетку в раствор более высокой концентрации, чем в клетке, то под микроскопом видно, что цитоплазма отстает от клеточной оболочки. Это особенно хорошо проявляется на клетке с окрашенным клеточным соком. Клеточный сок остается внутри вакуоли, а между цитоплазмой и оболочкой образуется пространство, заполненное внешним раствором. Явление отставания цитоплазмы от клеточной оболочки получило на­звание плазмолиза. Плазмолиз происходит в результате того, что под влиянием более концентрированного внешнего раствора вода выходит из клетки (от своего большего химического потенциала к меньшему), тогда как растворенные вещества остаются в клетке. При помещении клеток в чистую воду или в слабо концентрированный раствор вода поступает в клетку. Количество воды в клетке увеличивается, объем вакуоли возрастает, клеточный сок давит на цитоплазму и прижимает ее к клеточной оболочке. Под влиянием внутреннего давления клеточная оболочка растягивается, в результате клетка переходит в напряженное состояние — тургор.

Наблюдения за явлениями плазмолиза и тургора позволяют изучить многие свойства клетки. Явление плазмолиза показывает, что клетка жива и цитоплазма сохранила полупроницаемость. В мертвых клетках мембрана не обладает полупроницаемостью, не контролирует потоки веществ, и осмотический выход воды не происходит. По скорости и форме плазмолиза можно судить о вязкости цитоплазмы. Наконец, явление плазмолиза позволяет определить величину ос­мотического потенциала в клетке (плазмолитический метод). Этот метод основан на подборе изоосмотического, или изотонического, раствора, т. е. имеющего осмотический потенциал (Ψосм. р-ра), равный осмотическому потенциалу кле­точного сока (Ψосм. кл.). Раствор, при котором в клетке начался плазмолиз, имеет осмотический потенциал, примерно равный осмотическому потенциалу клетки. Зная концентрацию этого наружного раствора в молях, можно вычислить его осмотический потенциал, а следовательно, осмотический потенциал клетки (Ψосм. р-ра = Ψосм. кл.).

Определение величины осмотического потенциала имеет большое значение, в частности для экологических исследований. Величина осмотического потенциала позволяет судить о максимальной способности растения поглощать воду из почвы и удерживать ее, несмотря на иссушающее действие атмосферы. Осмотический потенциал колеблется в широких пределах, от —5 до —200 бар. Осмотический потенциал около —1 бара наблюдается у водных растений. Осмотический потенциал, равный —200 бар, обнаружен у выжатого сока талофта Atriplex confertifolia. В 1 л сока этого растения содержится 67,33 г хлоридов. У большинства растений средней полосы осмотический потенциал колеблется от —5 до —30 бар. Вместе с тем необходимо отметить, что факторы, действующие на изменение осмотического потенциала, чрезвычайно разнообразны. Даже соседние, рядом расположенные клетки могут отличаться по величине осмотического потенциала. Обычно отрицательная величина осмотического потенциала больше у мелких клеток по сравнению с крупными. Установлены определенные градиенты осмотического потенциала в пределах одной ткани. Так, в тканях стебля отрицательный осмотический потенциал возрастает от периферии к центру и от основания к верхушке. В корне отрицательный осмотический потенциал, наоборот, постепенно снижается от основания к верхушке. В проводящих элементах стебля и корня, как правило, отрицательная величина осмотического потенциала очень низка (от —1 до —1,5 бара). В листьях осмотический потенциал колеблется от -10 до -18 бар. Осмотический потенциал различен у разных жизненных форм. У древесных Пород он более отрицателен, чем у кустарников, а у кустарников более отрицателен, чем у травянистых растении. Разные экологические группы различаются по величине осмотического потенциала. У растений пустынь осмотический потенциал более отрицателен, чем у степных растений; у степных более отрицателен, чем у луговых. Еще меньше осмотическая концентрация у растений болотных и водных местообитаний (соответственно наименее отрицательный осмо­тический потенциал). У светолюбивых растений осмотический потенциал более отрицательный, чем у теневыносливых. На величину осмотического потенциала влияет концентрация растворенных веществ в клеточном соке — это осмотически активные вещества (органические кислоты, соли, аминокислоты, сахара). Растение в определенной степени регу­лирует величину осмотического потенциала. Ферментативное превращение сложных нерастворимых веществ в растворимые (крахмала в сахара, белков в аминокислоты) приводит к возрастанию концентрации клеточного сока и повышению отрицательной величины осмотического потенциала. Увеличенное накопление растворимых солей также делает более отрицательным осмотический потенциал. Несмотря на то, что осмотический потенциал меняется в зависимости от внешних условий, все же для каждого вида эти изменения происходят в своих определенных пределах. Величину осмотического потенциала многие физиологи считают одной из характеристик данного вида растений.


Дата добавления: 2015-07-17 | Просмотры: 652 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.006 сек.)