АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Антигены на поверхности клеток тканей

Прочитайте:
  1. A. замедление созревания клеток
  2. C. создание благоприятных условий для нормальной жизнедеятельности клеток
  3. D. снижением чувствительности инсулинзависимых клеток к инсулину под влиянием глюкокортикоидов
  4. E. появление клеток Гумпрехта
  5. E. Увеличение кратности развития клеток опухоли при увеличении дозы канцерогенного фактора
  6. I. Происхождение эндокринных клеток
  7. I. Типы клеток
  8. I.2. Количественная характеристика степени гипоксии тканей и клеток
  9. L Затем незернистые лейкоциты эмигрируют трансэндотелиально в результате изменения коллоидного состояния цитоплазмы эндотелиальных клеток.
  10. V На этих промежуточных этапах происходят дальнейшие эпигеномные и геномные изменения клеток в кроветворных органах.

антигены HLA-комплекса (HLA – human leukocyte antigen – человеческий антиген лейкоцитов) – антигены гистосовместимости (то есть, генетически детерминированные изоантигены, которые вызывают иммунный ответ при трансплантации в организм другого человека). У человека главный комплекс гистосовместимости (MHC) – это участок хромосомы, содержащий гены, которые определяют синтез антигенов гистосовместимости – находится на коротком плече 6 хромосомы.

Молекулярные классы MHC-региона – молекулы, кодируемые MHC-областью разделены на три класса: I, II и III.

Молекулы I класса – HLA-A, HLA-B и HLA-C – кодируются тремя отдельными парами генных локусов. Антигены I класса, впервые найденные на лейкоцитах (отсюда термин HLA), экспрессируются (синтезируются и выводятся на клеточную поверхность) почти во всех тканях (продукт четвертого локуса I класса, HLA-G, экспрессируется только в трофобласте). Молекулы I класса играют важную роль при распознавании антигена цитотоксическими T-клетками (CD8).

Молекулы II класса кодируются тремя или более генными локусами (DR, DP и DQ). HLA-DR антигены известны также как Ia антигены по аналогии с антигенами иммунного ответа у мышей. Антигены II класса имеют ограниченное распространение в тканях, преимущественно на B-клетках, макрофагах, обрабатывающих антиген, и активированных T-клетках; они участвуют в распознавании антигена T-клетками (хелперами; CD4).

В 6 хромосоме между генами I и II классов находятся гены, кодирующие молекулы III класса (которые включают факторы комплемента 2, 4a и 4b) и цитокины TNF и TNF?.

В клетках человека для каждого HLA-локуса имеются два аллеля (альтернативных формы гена), которые кодируют, соответственно, два HLA-антигена в клетке. Оба антигена экспрессируются, поэтому все ядросодержащие клетки в организме имеют четыре пары антигенов (A, B, C и D), т.е. в общей сложности как минимум восемь HLA-антигенов (для простоты считается, что HLA-D не имеет разновидностей). Таким образом человек наследует одну аллель в каждом локусе от каждого родителя (то есть, восемь HLA антигенов на клетке, четыре унаследованы от одного родителя и четыре от другого).

Сложность системы HLA антигенов объясняется существованием большого количества различных возможных аллелей для каждого локуса (по крайней мере 20 для HLA-A, 40 для HLA-B, 10 для HLA-C и 40 HLA-D). Они кодируют соответствующее число HLA антигенов в клетках: то есть, в общей популяции любые два из 20 различных антигенов могут быть закодированы в локусе А, любые два из 40 в локусе B и т.д. Огромное число возможных комбинаций HLA антигенов приводит к низкой вероятности того, что два индивидуума будут иметь идентичный тип HLA.

Так как HLA локусы близко расположены в 6 хромосоме они обычно наследуются как гаплотипы (то есть, без рекомбинации; плод получает материнские группы A, B, C и D и отцовские группы A, B, C и D). Поэтому среди потомства двух родителей имеется приблизительно 1:4 случаев полного совпадения (двух-гаплотипные) HLA антигенов, 1:2 случаев одно-гаплотипного сходства HLA антигенов и 1:4 случаев полного несоответствия HLA антигенов. Высокая степень совместимости редко наблюдается у двух неродственных людей, поэтому трансплантация органов родственников чаще имеет положительные результат, чем при трансплантации генетически несвязанных органов.

При определении HLA совместимости используются периферические лимфоциты крови. Определение совместимости по HLA-A, HLA-B, HLA-C и HLA-DR антигенам производится путем использования набора антисывороток с антителами известной HLA специфичности; то есть, HLA тип определяется серологически. Так как другие HLA-D антигены не могут быть определены серологически (т.к. невозможно получить соответствующие антисыворотки), совместимость по ним определяется методами смешанной культуры лимфоцитов. Выживание почечного аллотрасплантата самое высокое, когда донор и реципиент близко согласованы по HLA-A, HLA-B и HLA-DR антигенам.

Другие антигены гистосовместимости – факт наличия иммунологических реакций при пересаживании полностью HLA совместимых тканей позволяет сделать вывод, что присутствуют другие активные антигены гистосовместимости в клетках, но они еще недостаточно изучены.

 

Механизмы отторжения трансплантата. При отторжении трансплантата играют роль и гуморальные, и клеточные механизмы. Хотя отторжение трансплантата иногда рассматривают как проявление феномена гиперчувствительности, потому что происходит повреждение клеток, это – фактически нормальный иммунный ответ на чужеродные антигены.

 

Гуморальные механизмы: гуморальные механизмы опосредованы антителами, которые могут присутствовать в сыворотке реципиента перед трансплантацией или развиваться после пересадки чужеродной ткани. Предоперационное определение уже присутствующих антител против пересаженных клеток выполняется путем прямого определения совместимости тканей, которая выполняется in vitro постановкой реакции между клетками донора (лимфоцитами крови) и сывороткой реципиента. Гуморальные факторы повреждают пересаженную ткань путем реакций, которые эквивалентны реакциям гиперчувствительности II и III типов. Взаимодействие антител с антигеном на поверхности пересаженных клеток приводит к некрозу клеток, а накопление иммунных комплексов в кровеносных сосудах активирует комплемент, что приводит к развитию острого некротизирующего васкулита или хронического фиброза интимы с сужением сосудов. Иммуноглобулины и комплемент в таких препаратах можно обнаружить иммунологическими методами.

Клеточные механизмы: клеточные механизмы отторжения вызывают T-лимфоциты, которые становятся сенсибилизированными к пересаженным антигенам. Эти лимфоциты вызывают повреждение клеток путем прямой цитотоксичности и путем секреции лимфокинов. Повреждение Т-клетками характеризуется некрозом паренхиматозных клеток, лимфоцитарной инфильтацией и фиброзом. Клеточные механизмы в процессе отторжения более важны, чем гуморальные.

 

Клинические типы отторжения трансплантата

Отторжения трансплантата имеет несколько форм: от быстротечной реакции, протекающей в течение нескольких минут после трансплантации, до медленных реакций, проявляющихся нарушением функций пересаженных тканей через несколько лет после трансплантации. Механизмы, вовлеченные в эти различные типы отторжения, также различны.

Острейшее отторжение – молниеносная реакция, протекающая в пределах нескольких минут после трансплантации и характеризующаяся тяжелым некротическим васкулитом с ишемическим повреждением пересаженного органа. Накопление иммунных комплексов и активация комплемента в стенке вовлеченных сосудов могут определяться иммунологическими методами.

Острейшее отторжение вызывается присутствием в сыворотке реципиента высоких уровней предсуществующих антител против антигенов на пересаженных клетках. Реакция антител с антигенами вызывает иммунокомплексное (типа феномена Артюса) повреждение в сосудах трансплантата. После начала применения техники прямого определения совместимости тканей острейшее отторжение стало редкостью.

Острое отторжение наблюдается довольно часто и может протекать от нескольких дней до месяцев после трансплантации. Оно является острым потому, что даже если признаки отторжения появляются через несколько месяцев после трансплантации и быстро прогрессируют с момента его начала. Острое отторжение характеризуется некрозом клеток и нарушением функций органа (например, острый некроз миокарда и сердечная недостаточность при пересадке сердца).

При остром отторжении участвуют и гуморальные, и клеточные механизмы. Иммунные комплексы депонируются в мелких сосудах трансплантата и вызывают острый васкулит, ведущий к ишемическим изменениям. Клеточное иммунное отторжение характеризуется некрозом паренхиматозных клеток и лимфоцитарной инфильтрацией тканей. При пересадке почек острое отторжение проявляется в виде острой почечной недостаточности в результате некроза почечных канальцев с лимфоцитарной инфильтрацией интерстициальной ткани. Для предупреждения и лечения острого отторжения применяют иммуносупрессивные лекарствами, например, кортикостероиды (преднизолон) и циклоспорины, или антилимфоцитарную сыворотку, которая разрушает Т-клетки пациента.

Хроническое отторжение наблюдается в наибольшем количестве пересаженных тканей и вызывает прогрессирующее ухудшение функции органа в течении месяцев или лет. У пациентов часто имеются эпизоды острого отторжения, приостановленные иммуносупрессивной терапией.

При хроническом отторжении активируется клеточный иммунитет (IV тип гиперчувствительности), что приводит к прогрессивному уничтожению паренхиматозных клеток. В пораженной ткани развивается фиброз с лимфоцитарной инфильтрацией. В некоторых случаях присутствие хронического васкулита указывает на параллельное воздействие антител.

При лечение хронического отторжения пытаются достичь баланса между повреждением трансплантата и выраженностью токсического влияния иммуносупрессивных лекарств, которые обычно используются для предотвращения отторжения.

 

17) Молекулы IgG, IgD и IgE представлены мономерами, IgM — пентамерами; молекулы IgA в сыворотке крови — мономеры, а в экскретируемых жидкостях (слёзная жидкость, слюна, секреты слизистых оболочек) — димеры.

 

IgM синтезируются при первичном попадании Аг в организм. Пик образования приходится на 4-5-е сутки с последующим снижением титра. Образование IgM к некоторым Аг (например, жгутиковым Аг бактерий) осуществляется постоянно. К IgM относят значительную часть AT, вырабатывающихся к Аг грамотрицательных бактерий.

 

Наличие IgM к Аг конкретного возбудителя указывает на острый инфекционный процесс.

 

 

Молекула IgM — пентамер; пять субъединиц соединены J-цепью [от англ. joining, связывающий], в результате чего молекула IgM приобретает 10 Аг-связывающих участков.

 

Молекулы IgM опсонизируют, агглютинируют, преципитируют и лизируют содержащие Аг структуры, а также активируют систему комплемента по классическому пути (для комплементзависимого лизиса бактерии достаточно одной молекулы IgM).

 

Иммуноглобулин G (IgG) — основной класс AT (до 75% всех Ig), защищающий организм от бактерий, вирусов и токсинов. После первичного контакта с Аг синтез IgM обычно сменяется образованием IgG.

 

Максимальные титры IgG при первичном ответе наблюдают на 6-8-е сутки. Обнаружение высоких титров IgG к Аг конкретного возбудителя указывает на то, что организм находится на стадии реконвалесценции или конкретное заболевание перенесено недавно. В особо больших количествах IgG синтезируется при вторичном ответе.

IgG представлены 4 подклассами: IgG1, IgG2, IgG3 и IgG4; их относительное содержание (в %) составляет соответственно 66-70, 23, 7-8 и 2-4. IgG непосредственно участвуют в реакциях иммунного цитолиза, реакциях нейтрализации, а также усиливают фагоцитоз, действуя как опсонины и связывая рецепторы Fc-фрагмента в мембране фагоцитирующих клеток (в результате этого фагоциты эффективнее поглощают и лизируют микроорганизмы).

Только IgG способны проникать через плаценту, что обеспечивает формирование у плода пассивного иммунитета.

 

 

Иммуноглобулины А (IgA) циркулируют в сыворотке крови (составляет 15-20% от всех Ig), а также секретируются на поверхность эпителия. Присутствуют в слюне, слёзной жидкости, молоке и на поверхности слизистых оболочек.

AT класса IgА усиливают защитные свойства слизистых оболочек пищеварительного тракта, дыхательных, половых и мочевыделительных путей. В сыворотке крови IgA циркулируют в виде двухвалентных мономеров; в секретируемых жидкостях преобладают четырёхвалентные димеры, содержащие одну J-цепь и дополнительную полипептидную молекулу (синтезируемый эпителиальными клетками секреторный компонент).

Эта молекула присоединяется к мономерам IgA в ходе их транспорта через эпителиальные клетки на поверхность слизистых оболочек. Секреторный компонент участвует не только в связывании молекул IgA, но обеспечивает их внутриклеточный транспорт и выделение на поверхность слизистых, а также защищает IgA от переваривания протеолитическими ферментами.

 

Молекулы IgA участвуют в реакциях нейтрализации и агглютинации возбудителей. Кроме того, после образования комплекса Аг-АТ они участвуют в активации комплемента по альтернативному пути.

 

Иммуноглобулин Е (IgE) специфически взаимодействуют с тучными клетками и базофильными лейкоцитами, содержащими многочисленные гранулы с БАВ. Их выделение из клетки (дегрануляция) вызывает резкое расширение просвета венул и увеличение проницаемости их стенки. Подобную картину можно наблюдать при аллергических реакциях (например, бронхиальной астме, аллергическом рините, крапивнице).

Аг-связывающие Fab-фрагменты молекулы IgE специфически взаимодействуют с Аг, попавшим в организм. Сформированный иммунный комплекс взаимодействует с рецепторами Fc-фрагментов IgE, встроенных в клеточную мембрану базофила или тучной клетки. Это взаимодействие и является сигналом для дегрануляции с высвобождением гистамина и других БАВ и развёртыванием острой аллергической реакции.

 

Защитные свойства IgE направлены преимущественно против гельминтов (нематод). Синтез IgE увеличивается при паразитарных инвазиях, IgE-моноклональной миеломе, а также первичных иммунодефицитах (атаксия-телеангиэктазия, синдромы Вискотта-Олдрича, Незелбфа, Ди Джорджи).

 


Дата добавления: 2015-08-14 | Просмотры: 831 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.007 сек.)