АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Регуляция ионами кальция

Прочитайте:
  1. IV. Ионы кальция.
  2. А)Карбонат кальция – шипучие таблетки
  3. АВТОНОМНАЯ САМОРЕГУЛЯЦИЯ ФЕРМЕНТАТИВНЫХ ПРОЦЕССОВ
  4. Аллостерическая регуляция
  5. Аллостерическая регуляция активности ферментов.
  6. Аллостерическая регуляция каталитической активности ферментов
  7. Антагонисты кальция
  8. Антагонисты кальция.
  9. Антикоагулянтная (регуляция образования фибрина) система.
  10. Ауторегуляция дыхания.

В расслабленной скелетной мышце комплекс тропонина (субъединицы = Т, С, I) с тропомиозином препятствует взаимодействию миозиновых головок с актином.

Быстрое увеличение в цитоплазме концентрации ионов кальция в результате открывания каналов СР приводит к связыванию Са2+ с С-субъединицей тропонина. Последняя по свойствам близка кальмодулину. Связывание ионов Са2+ вызывает конформационную перестройку в тропонине, тропонинтропомиозиновый комплекс разрушается и освобождает на молекуле актина участок связывания с миозином (на схеме выделен красным цветом). Это инициирует цикл мышечного сокращения.

В отсутствие последующего стимулирования АТФ-зависимые кальциевые насосы мембраны СР быстро снижают концентрацию ионов Ca2+ до исходного уровня. Как следствие, комплекс Са2+ с тропонином С диссоциирует, тропонин восстанавливает исходную конформацию, место связывания миозина на актине блокируется и мышца расслабляется.

Таким образом, при сокращении мышечного волокна скелетных мышц позвоночных происходит следующая последовательность событий. При поступлении сигнала от двигательного нейрона мембрана мышечной клетки деполяризуется, сигнал передается на Сa2+-каналы СР. Са2+-каналы открываются, внутриклеточный уровень ионов Са2+ возрастает. Ионы Сa2+ связывается с тропонином С, вызывая конформационную

Рисунок 2

перестройку в тропонине, что влечет за собой разрушение комплекса тропонин-тропомиозин и дает возможность головкам миозина связываться с актином. Происходит инициация актин-миозинового цикла.

По завершении сокращения уровень ионов Са2+ снижается за счет активного обратного транспорта Са2+ в СР, тропонин С отдает Са2+, комплекс тропонин-тропомиозин занимает исходное положение на молекуле актина, блокируя актин-миозиновый цикл. Результатом является расслабление мышцы.

МЕХАНИЗМЫ ЭНЕРГООБЕСПЕЧЕНИЯ МЫШЕЧНОЙ РАБОТЫ

ИСТОЧНИКИ ЭНЕРГИИ:

1. Специальные реакции субстратного фосфорилирования.

2. Гликолиз, гликогенолиз.

3. Окислительное фосфорилирование.

 

1. Специальные реакции субстратного фосфорилирования

Участие специальных реакций субстратного фосфорилирования в обеспечении энергией мышечной клетки различна - это зависит от интенсивности, продолжительности, мощности и длительности мышечной работы.

1) Креатинфосфокиназная реакция.

 

Это самый быстрый способ ресинтеза АТФ. Запасов креатинфосфата хватает для обеспечения мышечной работы в течение 20 секунд.

Максимально эффективен. Не требует присутствия кислорода, не дает побочных нежелательных продуктов, включается мгновенно. Его недостаток - малый резерв субстрата (хватает только на 20 секунд работы). Обратная реакция может протекать в митохондриях с использованием АТФ, образовавшейся в процессе окислительного фосфорилирования.

Мембрана митохондрий хорошо проницаема как для креатина, так и для креатин-фосфата, а креатинфосфокиназа есть и в саркоплазме, и в межмембранном пространстве митохондрий.

 

 

2) Миокиназная реакция. Протекает только в мышечной ткани!

2 АДФ -----------------> АТФ + АМФ

Реакция катализируется миокиназой (аденилаткиназой).

Главное значение этой реакции заключается в образовании АМФ - мощного аллостерического активатора ключевых ферментов гликолиза, гликогенолиза, ГБФ-пути.

2. Гликолиз, гликогенолиз.

Не требуют присутствия кислорода (анаэробные процессы). Обладают большим резервом субстратов. Используется гликоген мышц (2% от веса мышцы) и глюкоза крови, полученная из гликогена печени.

Недостатки:

1) Небольшая эффективность: 3 АТФ на один глюкозный остаток гликогена.

2) Накопление недоокисленных продуктов (лактат).

3) Гликолиз начинается не сразу - только через 10-15 секунд после начала мышечной работы.

3. Окислительное фосфорилирование.

Преимущества:

1. Это наиболее энергетически выгодный процесс - синтезируется 38 молекул АТФ при окислении одной молекулы глюкозы.

2. Имеет самый большой резерв субстратов: может использоваться глюкоза, гликоген, глицерин, кетоновые тела.

3. Продукты распада (CO2 и H2O) практически безвредны.

Недостаток: требует повышенных количеств кислорода.

Важную роль в обеспечении мышечной клетки кислородом играет миоглобин, у которого сродство к кислороду больше, чем у гемоглобина: при парциальном давлении кислорода, равном 30 мм.рт.ст., миоглобин насыщается кислородом на 100%, а гемоглобин - всего на 30%. Поэтому миоглобин эффективно отнимает у гемоглобин доставляемый им кислород.

ИЗМЕНЕНИЯ МЕТАБОЛИЗМА ПРИ МЫШЕЧНОЙ РАБОТЕ.

1. Уменьшение концентрации АТФ смещает равновесие креатинфосфокиназной реакции вправо: используется креатинфосфат. Далее включается гликолиз, так системе окислительного фосфорилирования необходима 1 минута для запуска. Это пусковая фаза мышечной работы.

2. Дальше изменения метаболизма зависят от интенсивности мышечной работы:

а) если мышечная работа длительная и небольшой интенсивности, то в дальнейшем клетка получает энергию путем окислительного фосфорилирования - это работа в "аэробной зоне“;

б) если мышечная работа субмаксимальной интенсивности, то - дополнительно к окислительному фосфорилированию включается гликолиз - это наиболее тяжелая мышечная работа - возникает “ кислородная задолженность”, это - работа "в смешанной зоне”;

в) если мышечная работа максимальной интенсивности, но непродолжительная, то механизм окислительного фосфорилирования не успевает включаться. Работа идет исключительно за счет гликолиза. После окончания максимальной нагрузки лактат поступает из крови в печень, где идут реакции глюконеогенеза, или лактат превращается в пируват, который дальше окисляется в митохондриях (ГДФ-путь). Для окисления пирувата нужен кислород, поэтому после мышечной работы максимальной и субмаксимальной интенсивности потребление кслорода мышечными клетками повышено - возвращается кислородная задолженность (долг).

Таким образом, энергетическое обеспечение разных видов мышечной работы различно. Поэтому существует специализация мышц, причем обеспечение энергией у разных мышечных клеток принципиально различается: есть "красные" мышцы и "белые" мышцы.

Красные мышцы - “медленные” оксидативные мышцы. Они имеют хорошее кровоснабжение, много митохондрий, высокая активность ферментов окислительного фосфорилирования. Предназначены для работы в аэробном режиме. Например, такие мышцы служат для поддержания тела в определенном положении (позы, осанка).

Белые мышцы - “быстрые”, гликолитические. В них много гликогена, у них слабое кровоснабжение, высока активность ферментов гликолиза, креатинфосфокиназы, миокиназы. Они обеспечивают работу максимальной мощности, но кратковременную.

У человека нет специализированных мышц, но есть специализированные волокна: в мышцах-разгибателях больше "белых" волокон, в мышцах спины больше "красных" волокон.

Существует наследственная предрасположенность к мышечной работе - у одних людей больше "быстрых" мышечных волокон - им рекомендуется заниматься теми видами спорта, где мышечная работа максимальной интенсивности, но кратковременная (тяжелая атлетика, бег на короткие дистанции и т.п.). Люди, в мышцах которых больше "красных" ("медленных") мышечных волокон, наибольших успехов добиваются в тех видах спорта, где необходима длительная мышечная работа средней интенсивности, например, марафонский бег (дистанция 40км). Для определения пригодности человека к определенному типу мышечных нагрузок используется пункционная биопсия мышц.

В результате скоростных тренировок (bodybuilding) утолщаются миофибриллы, кровоснабжение возрастает, но непропорционально увеличению массы мышечных волокон, количество актина и миозина возрастает, увеличивается активность ферментов гликолиза и креатинфосфокиназы.

Более полезны для организма тренировки "на выносливость". При этом мышечная масса не увеличивается, но увеличивается количество миоглобина, митохондрий и активность ферментов ГБФ-пути..

Синтез и расщепление мышечных белков контролируются гормонами. Тестостерон и синтетические анаболики стимулируют биосинтез белка; напротив, кортизол подавляет образование мышечных белков.

Белки актин и миозин содержат остатки гистидина, метилированного на стадии посттрансляционной модификации. При расщеплении этих белков образуется 3-метилгистидин, который дальше не разрушается. Количество метилгистидина в моче служит мерой деградации мышечных белков.

БИОХИМИЯ НЕРВНОЙ ТКАНИ


Дата добавления: 2015-09-03 | Просмотры: 669 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.006 сек.)