АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

идентификации микроорганизмов (вопрос 18)

Прочитайте:
  1. S: Какой из микроорганизмов не относится к прокариотам
  2. S: Какой из перечисленных микроорганизмов не относится к эукариотам
  3. АНАБОЛИЗМ (ПИТАНИЕ) МИКРООРГАНИЗМОВ
  4. Влияние внешних условий на жизнедеятельность почвенных микроорганизмов
  5. Влияние физических факторов на микроорганизмы. Отношение микроорганизмов к молекулярному кислороду. Аэробы, анаэробы, микроаэрофилы.
  6. Вопрос 1. Основы Микробиологии. Классификация Микроорганизмов
  7. Вопрос 2. Особенности Морфологии Микроорганизмов
  8. Вопрос 4. Методы определения чувствительности микроорганизмов к антибиотикам.
  9. Время выдачи ответа баклабораторией при проведении бактериологического исследования для быстрорастущих микроорганизмов (время генерации 15-20 мин.)
  10. Вторая группа санитарно- показательных микроорганизмов

В естественных условиях микроорганизмы существуют в смешанных популяциях, ассоциациях и пр. Для установления этиологического фактора инфекционного заболевания бактериологическим методом, требуется выделение микроба в чистом виде. Для этого применяют различные питательные среды из перечисленных выше групп (транспортные, обогащения, элективно-диагностические, дифферернциально-диагностические и пр.) в определенном порядке.

Вначале делают посев исследуемого материала (кровь, фекалии, моча, соскобы розеол, мокрота, носоглоточные смывы и пр.) после определенной его обработки как обычно на среды обогащения и элективно-диагностические (при необходимости перемещения посевов на большие расстояния применяют среды консервирования). Засеянные питательные среды выдерживают при температуре, оптимальной для данного микроба (обычно в термостате при 370 С).

После экспозиции просматривают чашки Петри и выбирают подозрительные колонии (по цвету, форме, размеру, краям колонии и пр. - это диагностические признаки), которые пересевают на скошенный агар, с целью получения чистой культуры в достаточном для дальнейшей работы количестве. Со скошенного агара делают пересев на дифференциально- диагностические среды.

При исследовании на энтеробактерии вводят дополнительные элективные среды (Олькеницкого и пр.), откуда делают пересевы на дифференциально-диагностические среды, с целью определения свойств выделенной культуры: ферментативных, протеолитических, бродильных, токсигенных и других, что является основой в определении вида, подвида и др. качеств исследуемой культуры.

Такая схема выделения микроба и идентификации может длиться 3-4 дня или более в зависимости от вида микроба (свойств). Конечным результатом является выделение штамма и установление его вида, а возможно – серовара, фаговара, антибиотикочувствительности и пр., т.е. проводится не только постановка этиологического диагноза, но и даются некоторые рекомендации для лечения конкретных инфекционных больных.

Чистая культура - это потомство одной микробной клетки, выращенное на питательной среде, т.е. культура моноклона.

Штамм - это чистая культура определенного вида микроба, выделенная в данное время из конкретного материала.

Вид – это категория, обозначающая микроорганизмы, имеющие сходный генотип и несколько различающиеся по фенотипу.

Род - это собирательный термин, обозначающий сходные по генотипу и несколько различающиеся по фенотипу (свойствам) микроорганизмы нескольких видов.

Для культивирования микроорганизмов необходимы не только питательные среды, но и условия изоляции пассируемых микробов от загрязнения.

Это достигается стерильными условиями культивирования.

Посев инокулята

В бактериологической практике нет малозначащих этапов, которые можно исполнить небрежно. Для конечного результата является очень важным: как и в какие сроки был взят материал для исследования и где он был засеян (у постели больного или в лаборатории).

Если материал перевозят в лабораторию, то важно в какие сроки он будет доставлен, каким образом и когда будет сделан посев.

Для каждой инфекции существует инструктивно-методическая литература по режиму и срокам доставки, способам забора материала и пр.

Первым этапом бактериологических исследований является посев исследуемой пробы на элективно-диагностические и среды обогащения. Питательные среды следует выбирать в зависимости от предполагаемых возбудителей и от типа материала (кровь, фекалии и пр.).

Посев проводят петлей (материал наносят у края чашки, затем рассеивают по секторам), шпателем (материал наносят на поверхность агара, а затем стеклянным или металлическим шпателем тщательно втирают его в поверхность среды), тампоном (тампон с материалом вносят в чашку, делают площадку и круговыми движениями чашки и тампона втирают материал в поверхность среды) и пр.

Для разных целей посевы, например, делают штрихами. Карандашом расписывают сектора на дне чашки и в каждом секторе посевы делают от края чашки к середине штрихами, которые не должны перекрещиваться (обычный посев). Иногда делают посев газоном: 1 мл исследуемого материала (жидкая бульонная культура) наносят пипеткой на агар и тщательно распределяют по всей поверхности, покачивая чашку. Надписи делают на чашках со стороны дна.

При пересеве из пробирки в чашку Петри, вначале берут пробирку с материалом в левую руку между указательным, большим и средним пальцами, положив ее на ребро кисти. Петлю берут в правую руку как "писчее перо", прокаливают и после остужают внутри пробирки. Пробку пробирки зажимают между мизинцем и ладонной поверхностью кисти правой руки и вынимают на огнем спиртовки, обжигая края пробирок. Вводят петлю внутрь пробирки, прикасаются к краю питательной среды для охлаждения петли, а затем набирают материал с поверхности среды, не повреждая агар.

Затем петлю с материалом вынимают из пробирки, быстро над огнем спиртовки закрывают пробирку пробкой и ставят ее в штатив, немного приподнимают крышку у чашки левой рукой, вводят внутрь чашки петлю, делают небольшую площадку, втирая материал, а затем, поворачивая чашку, засевают штрихами по секторам чашки. Петлю вынимают и быстро закрывают чашку, а петлю стерилизуют над огнем и ставят в штатив.

При посеве из пробирки в пробирку, обе держат в левой руке наклонно, как описано выше. Петлю держат как обычно, прокаливают, затем одновременно вынимают пробки из обеих пробирок, как описано выше. Петлю вводят в пробирку с посевом, набирают культуру и вынимают, вводят в другую пробирку и производят посев штрихами от нижнего края косяка к верхнему.

Если засевают в жидкую среду, то петлю держат некоторое время в этой среде, чтобы культура могла распределиться в жидкости.

При посеве в полужидкий агар делают петлей укол в эту среду. Затем петлю вынимают, закрывают пробками обе пробирки над огнем, стерилизуют петлю и ставят в штатив, а затем ставят и пробирки.

При посеве на скошенный агар, делают штрихи, начиная с нижнего края скошенного агара, с конденсационной воды (если она есть). При посеве на среды Ресселя, Олькеницкого и Клиглера после штрихов делают укол внутрь агара.

При посеве жидкого материала пользуются пипетками или петлей. При посеве пробы для количественного учета микроорганизмов наносят 1 мл материала пастеркой на чашку и шпателем втирают его в поверхность первой чашки, не прожигая шпатель, переносят его во вторую чашку и также втирают, затем и в третью. Лишнюю жидкость отсасывают из чашек пипетками.

Посевы инкубируют в термостате при 370 С (обычно) или при температуре, оптимальной для культуры. Срок инкубации зависит от скорости деления клеток, например, бактерии кишечной группы обычно растут 18-24 ч, холерный вибрион на пептонной воде - 6 ч, другие микробы, например, лептоспиры - до 5-6 дней и т.д.

Изучение изолированных колоний

По истечение определенного срока на засеянных чашках микробы формируют колонии разной морфологии.

Колония - это видимое невооруженным глазом характерное скопление микроорганизмов, выросших на плотной питательной среде как потомство от одной из засеянных микробных клеток.

Это второй этап бактериологического анализа. Морфология выросших колоний - это важный культурально-диагностический признак. Колонии микробов изучают в проходящем свете с помощью лупы или невооруженным глазом. Рассматривают чашку со стороны дна.

Оценивают морфологию по определенным критериям:

n размер колонии (микроскопический, мелкий, средний, гигантский),

n форма колоний (круглые, неправильные, отросчатые и пр.),

n профиль колоний (плоский, выпуклый, куполообразный, блюдцеобразный и пр.),

n характер поверхности (гладкая, шероховатая, морщинистая, изрезанная и пр.),

n прозрачность колонии (прозрачная, мутная, полупрозрачная),

n пигмент (желтый розовый красный, кремовый, перламутровый и пр.),

n структура колонии (гомогенная, зернистая, волокнистая и пр.),

n края колонии (ровные, фестончатые, изрезанные, волнистые, бахромчатые и пр.),

n консистенция колонии (мягкая, сухая, слизистая, сметанообразная, крошковидная),

тип колонии (круглые, влажные, выпуклые – S-тип, сухие, шероховатые, края неправильные – R-тип, тягучие, слизистые, валик вокруг колонии – М-тип)

 

(вопрос 19)

Микроорганизмы синтезируют различные ферменты - специфические белковые катализаторы. У бактерий обнаружены ферменты 6 основных классов.

1.Оксидоредуктазы- катализируют окислительно- восстановительные реакции.

2.Трансферазы- осуществляют реакции переноса групп атомов.

3.Гидролазы- осущесвляют гидролитическое расщепление различных соединений.

4.Лиазы- катализируют реакции отщепления от субстрата химической группы негидролитическим путем с образованием двойной связи или присоединения химической группы к двойным связям.

5.Лигазы или синтетазы- обеспечивают соединение двух молекул, сопряженное с расщеплением пирофосфатной связи в молекуле АТФ или аналогичного трифосфата.

6.Изомеразы - определяют пространственное расположение групп элементов.

В соответствии с механизмами генетического контроля у бактерий выделяют три группы ферментов:

- конститутивные, синтез которых происходит постоянно;

- индуцибельные, синтез которых индуцируется наличием субстрата;

- репрессибельные, синтез которых подавляется избытком продукта реакции.

Ферменты бактерий делят на экзо- и эндоферменты. Экзоферменты выделяются во внешнюю среду, осуществляют процессы расщепления высокомолекулярных органических соединений. Способность к образованию экзоферментов во многом определяет инвазивность бактерий- способность проникать через слизистые, соединительнотканные и другие тканевые барьеры.

Примеры: гиалуронидаза расщепляет гиалуроновую кислоту, входящую в состав межклеточного вещества, что повышает проницаемость тканей (клостридии, стрептококки, стафилококки и многие другие микроорганизмы); нейраминидаза облегчает преодоление слоя слизи, проникновение внутрь клеток и распространение в межклеточном пространстве (холерный вибрион, дифтерийная палочка, вирус гриппа и многие другие). К этой же группе относятся энзимы, разлагающие антибиотики.

В бактериологии для дифференциации микроорганизмов по биохимическим свойствам основное значение часто имеют конечные продукты и результаты действия ферментов. В соответствии с этим существует микробиологическая (рабочая) классификация ферментов.

1.Сахаролитические.

2.Протеолитические.

3.Аутолитические.

4.Окислительно- восстановительные.

5.Ферменты патогенности (вирулентности).

Ферментный состав клетки определяется геномом и является достаточно постоянным признаком. Знание биохимических свойств микроорганизмов позволяет идентифицировать их по набору ферментов. Основные продукты ферментирования углеводов и белков- кислота, газ, индол, сероводород, хотя реальный спектр для различных микроорганизмов намного более обширный.

Основные ферменты вирулентности- гиалуронидаза, плазмокоагулаза, лецитиназа, нейраминидаза, ДНК-аза. Определение ферментов патогенности имеет значение при идентификации ряда микроорганизмов и выявления их роли в патологии.

Ряд ферментов микроорганизмов широко используется в медицине и биологии для получения различных веществ (аутолитические, протеолитические), в генной инженерии (рестриктазы, лигазы).

(вопрос 15)

Метаболизм микроорганизмов.

Для роста и размножения микроорганизмы нуждаются в веществах, используемых для построения структурных компонентов клетки и получения энергии. Метаболизм (т.е. обмен веществ и энергии) имеет две составляющих- анаболизм и катаболизм. Анаболизм- синтез компонентов клетки (конструктивный обмен). Катаболизм- энергетический обмен, связан с окислительно- восстановительными реакциями, расщеплением глюкозы и других органических соединений, синтезом АТФ. Питательные вещества могут поступать в клетку в растворимом виде (это характерно для прокариот)- осмотрофы, или в виде отдельных частиц- фаготрофы.

Основным регулятором поступления веществ в бактериальную клетку является цитоплазматическая мембрана. Существует четыре основных механизма поступления веществ: - пассивная диффузия - по градиенту концентрации, энергонезатратная, не имеющая субстратной специфичности;

- облегченная диффузия - по градиенту концентрации, субстратспецифичная, энергонезатратная, осуществляется при участии специализированных белков пермеаз;

- активный транспорт- против градиента концентрации, субстратспецифичен (специальные связывающие белки в комплексе с пермеазами), энергозатратный (за счет АТФ), вещества поступают в клетку в химически неизмененном виде;

- транслокация (перенос групп)- против градиента концентрации, с помощью фосфотрансферазной системы, энергозатратна, вещества (преимущественно сахара) поступают в клетку в форфорилированном виде.

Основные химические элементы- органогены, необходимые для синтеза органичеких соединений- углерод, азот, водород, кислород.

В зависимости от источника потребляемого углерода микробы подразделяют на аутотрофы (используют CO2) и гетеротрофы (используют готовые органические соединения). В зависимости от источника энергии микроорганизмы делят на фототрофы (энергию получают за счет фотосинтеза- например, цианобактерии) и хемотрофы (энергия добывается за счет химических, окислительно- восстановительных реакций). Если при этом донорами электронов являются неорганические соединения, то это литотрофы, если органические- органотрофы. Если бактериальная клетка в состоянии синтезировать все необходимые для жизнедеятельности вещества, то это прототрофы. Если бактерии нуждаются в дополнительных веществах (факторах роста), то это ауксотрофы. Основными факторами роста для труднокультивируемых бактерий являются пуриновые и пиримидиновые основания, витамины, некоторые (обычно незаменимые) аминокислоты, кровяные факторы (гемин) и др.

(вопрос 16)

Дыхание микроорганизмов.

Путем дыхания микроорганизмы добывают энергию. Дыхание- биологический процесс переноса электронов через дыхательную цепь от доноров к акцепторам с образованием АТФ. В зависимости от того, что является конечным акцептором электронов, выделяют аэробное и анаэробное дыхание. При аэробном дыхании конечным акцептором электронов является молекулярный кислород (О2), при анаэробном- связанный кислород (-NO3, =SO4, =SO3).

Примеры.

О2

Аэробное дыхание донор водорода H2O

Анаэробное дыхание

нитратное окисление NO3

(факультативные анаэробы) донор водорода N2

сульфатное окисление SO4

(облигатные анаэробы) донор водорода H2S

По типу дыхания выделяют четыре группы микроорганизмов.

1. Облигатные (строгие) аэробы. Им необходим молекулярный (атмосферный) кислород для дыхания.

2. Микроаэрофилы нуждаются в уменьшенной концентрации (низком парциальном давлении) свободного кислорода. Для создания этих условий в газовую смесь для культивирования обычно добавляют CO2, например до 10- процентной концентрации.

3. Факультативные анаэробы могут потреблять глюкозу и размножаться в аэробных и анаэробных условиях. Среди них имеются микроорганизмы, толерантные к относительно высоким (близких к атмосферным) концентрациям молекулярного кислорода - т.е. аэротолерантные, а также микроорганизмы которые способны в определенных условиях переключаться с анаэробного на аэробное дыхание.

4. Строгие анаэробы размножаются только в анаэробных условиях т.е. при очень низких концентрациях молекулярного кислорода, который в больших концентрациях для них губителен. Биохимически анаэробное дыхание протекает по типу бродильных процессов, молекулярный кислород при этом не используется.

Аэробное дыхание энергетически более эффективно (синтезируется большее количество АТФ).

В процессе аэробного дыхания образуются токсические продукты окисления (H2O2- перекись водорода, -О2 - свободные кислородные радикалы), от которых защищают специфические ферменты, прежде всего каталаза, пероксидаза, пероксиддисмутаза. У анаэробов эти ферменты отсутствуют, также как и система регуляции окислительно- восстановительного потенциала (rH2).

(вопрос 3)

Прокариоты отличаются от эукариот по ряду основных признаков.

1.Отсутствие истинного дифференцированного ядра (ядерной мембраны).

2.Отсутствие развитой эндоплазматической сети, аппарата Гольджи.

3.Отсутствие митохондрий, хлоропластов, лизосом.

4.Неспособность к эндоцитозу (захвату частиц пищи).

5.Клеточное деление не связано с циклическими изменениями строения клетки.

6. Значительно меньшие размеры (как правило). Большая часть бактерий имеет размеры 0,5- 0,8 микрометров (мкм) х 2- 3 мкм.

(вопрос 17)

Основные методы создания анаэробных условий для культивирования микроорганизмов.

1.Физический- откачивание воздуха, введение специальной газовой безкислородной смеси (чаще- N2- 85%, CO2- 10%, H2- 5%).

2.Химический- применяют химические поглотители кислорода.

3.Биологический- совместное культивирование строгих аэробов и анаэробов (аэробы поглощают кислород и создают условия для размножения анаэробов).

4.Смешанный- используют несколько разных подходов.

Необходимо отметить, что создание оптимальных условий для строгих анаэробов- очень сложная задача. Очень непросто обеспечить постоянное поддержание безкислородных условий культивирования, необходимы специальные среды без содержания растворенного кислорода, поддержание необходимого окислительно- восстановительного потенциала питательных сред, взятие и доставка, посев материала в анаэробных условиях.

Существует ряд приемов, обеспечивающих более подходящие условия для анаэробов- предварительное кипячение питательных сред, посев в глубокий столбик агара, заливка сред вазелиновым маслом для сокращения доступа кислорода, использование герметически закрывающихся флаконов и пробирок, шприцев и лабораторной посуды с инертным газом, использование плотно закрывающихся эксикаторов с горящей свечой. Используются специальные приборы для создания анаэробных условий- анаэростаты. Однако в настоящее время наиболее простым и эффективным оборудованием для создания анаэробных и микроаэрофильных условий является система “Газпак” со специальными газорегенерирующими пакетами, действующими по принципу вытеснения атмосферного воздуха газовыми смесями в герметически закрытых емкостях.

Основные принципы культивирования микроорганизмов на питательных средах.

1.Использование всех необходимых для соответствующих микробов питательных компонентов.

2.Оптимальные температура, рН, rH2, концентрация ионов, степень насыщения кислородом, газовый состав и давление.

Микроорганизмы культивируют на питательных средах при оптимальной температуре в термостатах, обеспечивающих условия инкубации.

По температурному оптимуму роста выделяют три основные группы микроорганизмов.

1.Психрофилы- растут при температурах ниже +20 градусов Цельсия.

2.Мезофилы- растут в диапозоне температур от 20 до 45 градусов (часто оптимум- при 37 градусах С).

3.Термофилы- растут при температурах выше плюс 45 градусов.

 

(вопрос 20)??? и 21???


Дата добавления: 2015-09-03 | Просмотры: 1391 | Нарушение авторских прав



1 | 2 | 3 | 4 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.015 сек.)