ПУТИ ВЫВЕДЕНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ ИЗ ОРГАНИЗМА
Лекарственные средства, их метаболиты и конъюгаты в основном выводятся с мочой и желчью.
В почках низкомолекулярные соединения, растворенные в плазме (не связанные с белками), фильтруются через мембраны капилляров клубочков и капсул (рис. II.8 и II.9). Кроме того, существенную роль играет активная секреция веществ в проксимальных канальцах с участием транспортных систем. Этим путем выделяются органические кислоты и основания, пенициллины, салицилаты,
Рис. II.8. Основные процессы,влияющие на выведение почками фармакологических веществ(схема).
Рис. II.9. Принципы выведения веществ почками.
сульфаниламиды, хинин, гистамин, тиазиды и др. Некоторые липофильные соединения могут проникать из крови в просвет канальцев (проксимальных и дистальных) путем простой диффузии через их стенки.
Выведение веществ в значительной степени зависит от процесса их реабсорбции (обратное всасывание) в почечных канальцах. Лекарственные средства реабсорбируются главным образом путем простой диффузии. Это касается в основном липофильных неполярных соединений, хорошо проникающих через биологические мембраны. Полярные соединения плохо реабсорбируются из почечных канальцев. В связи с этим для выведения слабых кислот и оснований важное значение имеет рН мочи. Так, при щелочной реакции мочи повышается выведение кислых соединений (например, кислоты салициловой, фенобарбитала), а при кислой - повышается выведение оснований (имизина и др.). Обусловлено это тем, что в указанных условиях соединения ионизированы и практически не реабсорбируются из почечных канальцев.
Кроме того, в реабсорбции ряда эндогенных веществ (аминокислоты, глюкоза, мочевая кислота) принимает участие активный транспорт.
Ряд препаратов (тетрациклины, пенициллины, дифенин, колхицин и др.) и особенно продукты их превращения в значительном количестве выделяются с желчью в кишечник, откуда частично выводятся с экскрементами, а также могут повторно всасываться и в последующем вновь выделяться в кишечник и т.д. (так называемая кишечно-печеночная циркуляция, или печеночная рециркуляция; рис. II.10).
Газообразные и многие летучие вещества (например, средства для ингаляционного наркоза) выводятся в основном легкими.
Отдельные препараты выделяются слюнными железами (йодиды), потовыми железами (противолепрозное средство дитофал), железами желудка (хинин, никотин) и кишечника (слабые органические кислоты), слезными железами (рифампицин).
Следует также учитывать, что в период лактации молочными железами выделяются многие вещества, которые получает кормящая мать (снотворные, болеутоляющие средства, спирт этиловый, никотин и др.). В связи с этим требуется особая осторожность в назначении матери лекарственных средств, так как с молоком они могут попасть в организм ребенка и оказать на него неблагоприятное влияние.
Рис. II.10. Кишечно-печеночная циркуляция веществ(схема).
Элиминация (удаление) вещества из организма обеспечивается экскрецией и биотрансформацией. Для количественной характеристики процесса элиминации используется ряд параметров: константа скорости элиминации (Kelim), «период полужизни» (t1/2) и общий клиренс (ClT).
Константа скорости элиминации (Kelim)отражает скорость удаления вещества из организма.Определяется по формуле:
Для суждения о скорости выведения веществ из организма используют также параметр «период полужизни» (полуэлиминации) - t1/2, который отража-
ет время, необходимое для снижения концентрации вещества в плазме крови на 50%:
Этот параметр используется для подбора доз веществ и интервалов их введения при создании стабильной концентрации препарата. Известно, что выведение веществ более чем на 90% осуществляется за время, равное 4 t1/2, что и учитывается при их дозировании. Следует иметь в виду, что t1/2 определяется не только выведением вещества из организма, но также его биотрансформацией и депонированием.
Кроме того, для количественной характеристики скорости элиминации веществ используют параметр клиренс1 (Cl), отражающий скорость очищения плазмы крови от вещества (выражается в объеме в единицу времени, при необходимости с учетом массы тела или его поверхности: мл/мин, мл/кг/мин, л/м2/ч и т.д.). Выделяют общий (тотальный) клиренс (ClT), а также почечный (ClR) и печеночный (ClH) клиренс.
Общий клиренс связан с такими параметрами, как объем распределения (Vd), «период полужизни» (t1/2) и константа скорости элиминации (Kelim).
Почечный клиренс зависит от процессов фильтрации, секреции и реабсорбции. Судить о почечном клиренсе можно на основании сопоставления концентраций вещества в моче и плазме крови (учитывая также скорость тока мочи).
Печеночный клиренс связан с захватом вещества гепатоцитами и его последующей биотрансформацией, а также с секрецией препарата в желчные пути.
5. МЕСТНОЕ И РЕЗОРБТИВНОЕ ДЕЙСТВИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ. ПРЯМОЕ И РЕФЛЕКТОРНОЕ ДЕЙСТВИЕ. ЛОКАЛИЗАЦИЯ И МЕХАНИЗМ ДЕЙСТВИЯ. «МИШЕНИ» ДЛЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ. ОБРАТИМОЕ И НЕОБРАТИМОЕ ДЕЙСТВИЕ. ИЗБИРАТЕЛЬНОЕ ДЕЙСТВИЕ
Действие вещества, возникающее в месте его приложения, называют местным. Например, обволакивающие средства покрывают слизистую оболочку, препятствуя раздражению окончаний афферентных нервов. При поверхностной анестезии нанесение местного анестетика на слизистую оболочку ведет к блоку окончаний чувствительных нервов только в месте нанесения препарата. Однако истинно местное действие наблюдается крайне редко, так как вещества могут либо частично всасываться, либо оказывать рефлекторное влияние.
Действие вещества, развивающееся после его всасывания, поступления в общий кровоток и затем в ткани, называют резорбтивным2. Резорбтивное дей-
1 От англ. clearance - очистка.
2 От лат. resorbeo - поглощаю.
ствие зависит от путей введения лекарственных средств и их способности проникать через биологические барьеры.
При местном и резорбтивном действии лекарственные средства оказывают либо прямое, либо рефлекторное влияние. Первое реализуется на месте непосредственного контакта вещества с тканью. При рефлекторном воздействии вещества влияют на экстероили интероцепторы и эффект проявляется изменением состояния либо соответствующих нервных центров, либо исполнительных органов. Так, использование горчичников при патологии
органов дыхания рефлекторно улучшает их трофику (эфирное горчичное масло стимулирует экстероцепторы кожи). Препарат лобелин, вводимый внутривенно, оказывает возбуждающее влияние на хеморецепторы каротидного клубочка и, рефлекторно стимулируя центр дыхания, увеличивает объем и частоту дыхания.
Основная задача фармакодинамики - выяснить, где и каким образом действуют лекарственные средства, вызывая те или иные эффекты. Благодаря усовершенствованию методических приемов эти вопросы решаются не только на системном и органном, но и на клеточном, субклеточном, молекулярном и субмолекулярном уровнях. Так, для нейротропных средств устанавливают те структуры нервной системы, синаптические образования которых обладают наиболее высокой чувствительностью к данным соединениям. Для веществ, влияющих на метаболизм, определяется локализация ферментов в разных тканях, клетках и субклеточных образованиях, активность которых изменяется особенно существенно. Во всех случаях речь идет о тех биологических субстратах-«мишенях», с которыми взаимодействует лекарственное вещество.
В качестве «мишеней» для лекарственных средств служат рецепторы, ионные каналы, ферменты, транспортные системы и гены.
Рецепторами называют активные группировки макромолекул субстратов, с которыми взаимодействует вещество. Рецепторы, обеспечивающие проявление действия веществ,
называют специфическими.
Выделяют следующие 4 типа рецепторов (рис.
I. Рецепторы, осуществляющие прямой контроль за функцией ионных каналов. К этому типу рецепторов, непосредственно сопряженных с ионными каналами, относятся н-холинорецепторы, ГАМКА-рецепторы, глутаматные рецепторы.
II. Рецепторы, сопряженные с эффектором через систему «G-белки - вторичные передатчики» или «G-белки-ионные каналы». Такие рецепторы имеются для многих гормонов и медиаторов (м-холинорецепторы, адренорецепторы).
III. Рецепторы, осуществляющие прямой контроль функции эффекторного фермента. Они непосредственно связаны с тирозинкиназой и регулируют фосфорилирование белков. По такому принципу устроены рецепторы инсулина, ряда факторов роста.
IV. Рецепторы, контролирующие транскрипцию ДНК. В отличие от мембранных рецепторов I-III типов, это внутриклеточные рецепторы (растворимые цитозольные или ядерные белки). С такими рецепторами взаимодействуют стероидные и тиреоидные гормоны.
Весьма плодотворным оказалось изучение подтипов рецепторов (табл. II.1) и связанных с ними эффектов. К числу первых исследований такого рода относятся работы по синтезу многих β-адреноблокаторов, широко применяемых при различных заболеваниях сердечно-сосудистой системы. Затем появились блокаторы гистаминовых Н2-рецепторов -
эффективные средства для лечения язвенной болезни желудка и двенадцатиперстной кишки. В последующем было синтезирова-
Рис. Принципы действия агонистов на процессы,контролируемые рецепторами.
I -прямое влияние на проницаемость ионных каналов(н-холинорецепторы,ГАМКА-рецепторы); II - опосредованное влияние (через G-белки) на проницаемость ионных каналов или на активность ферментов, регулирующих образование вторичных передатчиков (м-холинорецепторы, адренорецепторы); III - прямое влияние на активность эффекторного фермента тирозинкиназы (инсулиновые рецепторы, рецепторы ряда факторов роста); IV - влияние на транс- крипцию ДНК (стероидные гормоны, тиреоидные гормоны).
но множество других препаратов, действующих на разные подтипы α-адренорецепторов, дофаминовых, опиоидных рецепторов и др. Эти исследования сыграли большую роль в создании новых групп избирательно действующих лекарственных веществ, которые нашли широкое применение в медицинской практике.
Рассматривая действие веществ на постсинаптические рецепторы, следует отметить возможность аллостерического связывания веществ как эндогенного (например, глицин), так и экзогенного (например, анксиолитики бензодиазепинового ряда; см. главу 11.4, рис. 11.3) происхождения. Аллостерическое1взаимодействие с рецептором не вызывает «сигнала». Происходит, однако, модуляция основного медиаторного эффекта, который может как усиливаться, так и ослабляться. Создание веществ такого типа открывает новые возможности регуляции функций ЦНС. Особенностью нейромодуляторов аллостерического действия является то, что они не оказывают прямого действия на основную медиаторную передачу, а лишь видоизменяют ее в желаемом направлении.
Важную роль для понимания механизмов регуляции синаптической передачи сыграло открытие пресинаптических рецепторов (табл. II.2). Были изучены пути гомотропной
ауторегуляции (действие выделяющего медиатора на пресинаптические рецепторы того же нервного окончания) и гетеротропной регуляции (пресинаптическая регуляция за счет другого медиатора) высвобождения медиаторов, что позволило по-новому оценить особенности действия многих веществ. Эти сведения послужили также основой для целенаправленного поиска ряда препаратов (например, празозина).
1 От греч. allos - иной, другой, stereos - пространственный.
Таблица II.1 Примеры некоторых рецепторов и их подтипов
Сродство вещества к рецептору, приводящее к образованию с ним комплекса «вещество-рецептор», обозначается термином «аффинитет»1. Способность вещества при
взаимодействии с рецептором стимулировать его и вызывать тот или иной эффект называется внутренней активностью.
1 От лат. affinis - родственный.
Вещества, которые при взаимодействии со специфическими рецепторами вызывают в них изменения, приводящие к биологическому эффекту, называют агонистами1 (они и обладают внутренней активностью). Стимулирующее действие агониста на рецепторы может приводить к активации или угнетению функции клетки. Если агонист, взаимодействуя с рецепторами, вызывает максимальный эффект, его называют полным агонистом. В отличие от последнего частичные агонисты при взаимодействии с теми же рецепторами не вызывают максимального эффекта. Вещества, связывающиеся с рецепторами, но не вызывающие их стимуляцию, называют антагонистами2. Внутренняя активность у них отсутствует (равна 0). Их фармакологические эффекты обусловлены антагонизмом с эндогенными лигандами (медиаторами, гормонами), а также с экзогенными веществами-агонистами. Если они занимают те же рецепторы, с которыми взаимодействуют агонисты, то речь идет о конкурентных антагонистах, если - другие участки макромолекулы, не относящиеся к специфическому рецептору, но взаимосвязанные с ним, то - о неконкурентных
антагонистах. При действии вещества как агониста на один подтип рецепторов и какантагониста - на другой, его обозначают агонистом-антагонистом. Например, анальгетик пентазоцин является антагонистом μ- и агонистом δ- и κ-опиоидных рецепторов.
Взаимодействие «вещество-рецептор» осуществляется за счет межмолекулярных связей. Один из видов наиболее прочной связи - ковалентная. Она известна для небольшого числа препаратов (α-адреноблокатор феноксибензамин, некоторые противобластомные вещества). Менее стойкой является распространенная ионная связь, осуществляемая за счет электростатического взаимодействия веществ с рецепторами. Последняя типична для ганглиоблокаторов, курареподобных средств, ацетилхолина. Важную роль играют ван-дер-ваальсовы силы, составляющие основу гидрофобных взаимодействий, а также водородные связи (табл. II.3).
Таблица II.3. Типы взаимодействия веществ с рецепторами
1 Имеется в виду взаимодействие неполярных молекул в водной среде. * 0,7 ккал (3 кДж) на одну СН2-группу.
В зависимости от прочности связи «вещество-рецептор» различают обратимое действие (характерное для большинства веществ) и необратимое (как правило, в случае ковалентной связи).
1 От греч. agonistes - соперник (agon - борьба).
2 От греч. antagonisma - борьба, соперничество (anti - против, agon - борьба).
Если вещество взаимодействует только с функционально однозначными рецепторами определенной локализации и не влияет на другие рецепторы, то действие такого вещества считают избирательным. Так, некоторые курареподобные средства довольно избирательно блокируют холинорецепторы концевых пластинок, вызывая расслабление скелетных мышц. В дозах, оказывающих миопаралитическое действие, на другие рецепторы они влияют мало.
Основой избирательности действия является сродство (аффинитет) вещества к рецептору. Это обусловлено наличием определенных функциональных группировок, а также общей структурной организацией вещества, наиболее адекватной для взаимодействия с данным рецептором, т.е. их комплементарностью. Нередко термин «избирательное действие» с полным основанием заменяют термином «преимущественное действие», так как абсолютной избирательности действия веществ практически не существует.
Оценивая взаимодействие веществ с мембранными рецепторами, передающими сигнал от наружной поверхности мембраны к внутренней, необходимо учитывать и те промежуточные звенья, которые связывают рецептор с эффектором. Важнейшими компонентами этой системы являются G-белки1, группа ферментов (аденилатциклаза, гуанилатциклаза, фосфолипаза С) и вторичные передатчики (цАМФ, цГМФ, ИФ3, ДАГ, Ca2+). Повышение образования вторичных передатчиков приводит к активации протеинкиназ, которые обеспечивают внутриклеточное фосфорилирование важных регуляторных белков и развитие разнообразных эффектов.
Большинство из звеньев этого сложного каскада может быть точкой приложения действия фармакологических веществ. Однако пока такие примеры довольно ограничены. Так, применительно к G-белкам известны только токсины, которые с ними связываются. С Gs-белком взаимодействует токсин холерного вибриона, а с Gi-белком - токсин палочки коклюша.
Имеются отдельные вещества, которые оказывают прямое влияние на ферменты, участвующие в регуляции биосинтеза вторичных передатчиков. Так, дитерпен растительного происхождения форсколин, применяемый в экспериментальных исследованиях, стимулирует аденилатциклазу (прямое действие). Фосфодиэстеразу ингибируют метилксантины. В обоих случаях концентрация цАМФ внутри клетки повышается.
Одной из важных «мишеней» для действия веществ являются ионные каналы. Прогресс в этой области в значительной степени связан с разработкой методов регистрации функции отдельных ионных каналов. Это стимулировало не только фундаментальные исследования,
посвященные изучению кинетики ионных процессов, но также способствовало созданию новых лекарственных средств, регулирующих ионные токи (табл. II.4).
Уже в середине ХХ века было установлено, что местные анестетики блокируют потенциалзависимые Nа+-каналы. К числу блокаторов Nа+-каналов относятся и многие противоаритмические средства. Кроме того, было показано, что ряд противоэпилептических средств (дифенин, карбамазепин) также блокируют по- тенциалзависимые Nа+-каналы и с этим, по-видимому, связана их противосудорожная активность.
1 Типы некоторых G-белков и их функции: GS - сопряжение возбуждающих рецепторов с аденилатциклазой; Gi - сопряжение тормозных рецепторов с аденилатциклазой; Go - сопряжение рецепторов с ионными каналами (снижается ток Ca2+); Gq - сопряжение рецепторов, активирующих фосфолипазу С; G-белки состоят из 3 субъединиц - α, β и γ.
Таблица II.4. Средства,влияющие на ионные каналы
В последние 30-40 лет большое внимание было уделено блокаторам Са2+-каналов, нарушающим вхождение ионов Ca2+ внутрь клетки через потенциалзависимые Са2+-каналы. Повышенный интерес к этой группе веществ в значительной степени связан с тем, что ионы Ca2+ принимают участие во многих физиологических процессах: мышечном сокращении, секреторной активности клеток, нервно-мышечной передаче, функции тромбоцитов и т.д.
Многие препараты этой группы оказались весьма эффективными при лечении столь распространенных заболеваний, как стенокардия, сердечные аритмии, артериальная гипертензия. Широкое признание получили такие препараты, как верапамил, дилтиазем, фенигидин и многие другие.
Привлекают внимание и активаторы Са2+-каналов, например производные дигидропиридина. Подобные вещества могут найти применение в качестве кардиотоников, вазоконстрикторных средств, веществ, стимулирующих высвобождение гормонов и медиаторов, а также стимуляторов ЦНС.
Особый интерес представляет поиск блокаторов и активаторов Са2+-каналов с преимущественным действием на сердце, сосуды разных областей (мозга, сердца и др.), ЦНС. К этому имеются определенные предпосылки, так как Са2+-каналы гетерогенны.
В последние годы большое внимание привлекают вещества, регулирующие функцию К+-каналов. Показано, что калиевые каналы весьма разнообразны по своей функциональной характеристике. С одной стороны, это существенно затрудняет фармакологические исследования, а с другой - создает реальные предпосылки для поиска избирательно действующих веществ. Известны как активаторы, так и блокаторы калиевых каналов.
Активаторы калиевых каналов способствуют их открыванию и выходу ионов К+ из клетки. Если это происходит в гладких мышцах, то развивается гиперполяризация мембраны и тонус мышц снижается. Благодаря такому механизму действуют миноксидил и диазоксид, используемые в качестве гипотензивных средств, а также антиангинальное средство никорандил.
Блокаторы калиевых каналов представляют интерес в качестве противоаритмических средств (амиодарон, орнид, соталол).
Блокаторы АТФ-зависимых калиевых каналов в поджелудочной железе повышают секрецию инсулина. По такому принципу действуют противодиабетические средства группы сульфонилмочевины (хлорпропамид, бутамид и др.).
Стимулирующий эффект аминопиридинов на ЦНС и нервно-мышечную передачу также связывают с их блокирующим влиянием на калиевые каналы.
Таким образом, воздействие на ионные каналы лежит в основе действия различных лекарственных средств.
Важной «мишенью» для действия веществ являются ферменты. Ранее уже отмечалась возможность воздействия на ферменты, регулирующие образование вторичных передатчиков (например, цАМФ). Установлено, что механизм действия нестероидных противовоспалительных средств обусловлен ингибированием циклооксигеназы и снижением биосинтеза простагландинов. В качестве гипотензивных средств используются ингибиторы ангиотензинпревращающего фермента (каптоприл и др.). Хорошо известны антихолинэстеразные средства, блокирующие ацетилхолинэстеразу и стабилизирующие ацетилхолин.
Противобластомное средство метотрексат (антагонист фолиевой кислоты) блокирует дигидрофолатредуктазу, препятствуя образованию тетрагидрофолата, необходимого для синтеза пуринового нуклеотида - тимидилата. Противогерпетический препарат ацикловир, превращаясь в ацикловиртрифосфат, ингибирует вирусную ДНК-полимеразу.
Еще одна возможная «мишень» для действия лекарственных средств - это транспортные системы для полярных молекул, ионов, мелких гидрофильных молекул. К ним относятся так называемые транспортные белки, переносящие вещества через клеточную мембрану. Они
имеют распознающие участки для эндогенных веществ. Эти участки могут взаимодействовать и с лекарственными средствами. Так, трициклические антидепрессанты блокируют нейрональный захват норадреналина. Резерпин блокирует депонирование норадреналина в везикулах. Одно из значительных достижений - создание ингибиторов протонового насоса в слизистой оболочке желудка (омепразол и др.), которые показали высокую эффективность при язвенной болезни желудка и двенадцатиперстной кишки, а также при гиперацидном гастрите.
В последнее время в связи с расшифровкой генома человека проводятся интенсивные исследования, связанные с использованием в качестве мишени генов. Несомненно, что генная терапия является одним из важнейших направлений современной и будущей фармакологии. Идея такой терапии заключается в регуляции функции генов,
этиопатогенетическая роль которых доказана. Основные принципы генной терапии сводятся к увеличению, уменьшению или выключению экспрессии генов, а также к замене мутантного гена.
Решение этих задач стало реальным благодаря возможности клонировать цепи с заданной последовательностью нуклеотидов. Введение таких модифицированных цепей направлено на нормализацию синтеза белков, определяющих данную патологию, и соответственно на восстановление нарушенной функции клеток.
Центральной проблемой в успешном развитии генной терапии является доставка нуклеиновых кислот к клеткам-мишеням. Нуклеиновые кислоты должны попасть из экстрацеллюлярных пространств в плазму, а затем, пройдя через клеточные мембраны, проникнуть в ядро и инкорпорироваться в хромосомы. В качестве транспортеров, или векторов, предложено использовать некоторые вирусы (например, ретровирусы, аденовирусы). При этом, с помощью генной инженерии вирусы-векторы лишаются способности к репликации, т.е. из них не происходит образования новых вирионов. Предложены и другие транспортные системы - комплексы ДНК с липосомами, белками, плазмидные ДНК и прочие микрочастицы и микросферы.
Естественно, что инкорпорированный ген должен функционировать достаточно длительное время, т.е. экспрессия гена должна быть стойкой.
Потенциальные возможности генной терапии касаются многих наследственных заболеваний. К ним относятся иммунодефицитные состояния, некоторые виды патологии печени (включая гемофилию), гемоглобинопатии, заболевания легких (например, кистозный фиброз), мышечной ткани (мышечная дистрофия Дюшенна) и др.
Широким фронтом разворачиваются исследования по выяснению потенциальных путей использования генной терапии для лечения опухолевых заболеваний. Эти возможности заключаются в блокировании экспрессии онкогенных белков; в активации генов, способных подавлять рост опухолей; в стимуляции образования в опухолях специальных ферментов, превращающих пролекарства в токсичные только для опухолевых клеток соединения;
повышении устойчивости клеток костного мозга к угнетающему действию антибластомных средств; повы- шении иммунитета против раковых клеток и т.д.
В случаях, когда возникает необходимость блокировать экспрессию определенных генов, используют специальную технологию так называемых антисмысловых (антисенсовых) олигонуклеотидов. Последние представляют собой относительно короткие цепочки нуклеотидов (из 15-25 оснований), которые комплементарны той зоне нуклеиновых кислот, где находится ген-мишень. В результате взаимодействия с антисмысловым олигонуклеотидом экспрессия данного гена подавляется. Этот принцип действия представляет интерес при лечении вирусных, опухолевых и других заболеваний. Создан первый препарат из группы антисмысловых нуклеотидов - витравен (фомивирзен), применяемый местно при ретините, вызванном цитомегаловирусной инфекцией. Появились препараты этого типа для лечения миелоидной лейкемии и других заболеваний крови. Они проходят клинические испытания.
В настоящее время проблема использования генов в качестве мишеней для фармакологического воздействия находится в основном в стадии фундаментальных исследований. Лишь единичные перспективные вещества такого типа проходят доклинические и начальные клинические испытания. Однако не приходится сомневаться, что в этом веке появятся многие эффективные средства для генной терапии не только наследственных, но и приобретенных заболеваний. Это будут принципиально новые препараты для лечения опухолей, вирусных заболеваний, иммунодефицитных состояний, нарушений кроветворения и свертывания крови, атеросклероза и т.д.
Таким образом, возможности для направленного воздействия лекарственных средств весьма разнообразны.
Дата добавления: 2015-10-20 | Просмотры: 665 | Нарушение авторских прав
|