ELECTRONICS WORKBENCH
Для операций с компонентами на общем поле Electronics Workbench выделены две области: поля компонентов и поля инструментов (рисунок 1.1).
Рисунок 1.1 – Общее поле Electronics Workbench
В правом верхнем углу расположена пиктограмма выключателя схемы, нажав на которую можно запустить или остановить процесс моделирования работы схемы. Немного ниже находится кнопка паузы, нажав на которую можно приостановить процесс моделирования.
Панель компонентов состоит из пиктограмм полей компонентов в виде их условных изображений.
Щелчком мыши на одной из одиннадцати пиктограмм полей компонентов можно открыть соответствующее поле. Расположение элементов в полях ориентировано на частоту использования компонента. В качестве примера на приведенном ниже рисунке 1.2 открыто поле источников компонентов (Sources).
В библиотеки элементов программы Electronics Work-bench входят аналоговые и цифро-аналоговые компоненты.
Все компоненты можно условно разбить на следующие группы:
- базовые компоненты,
- источники,
- линейные компоненты,
- ключи,
- нелинейные компоненты,
- индикаторы,
- логические компоненты,
- узлы комбинационного типа,
- узлы последовательного типа,
- гибридные компоненты.
Рисунок 1.2 – Источники Electronics Workbench
Приведем описания некоторых элементов из перечисленных выше групп:
Соединительный узел
Узел применяется для соединения проводников и создания контрольных точек. К каждому узлу может присоединяться не более четырех проводников.
После того как схема собрана, можно вставить дополнительные узлы для подключения приборов.
Заземление
Компонент «заземление» имеет нулевое напряжение и таким образом обеспечивает исходную точку для отсчета потенциалов.
Не все схемы нуждаются в заземлении для моделирования, однако, любая схема содержащая:
- операционный усилитель,
- трансформатор,
- управляемый источник,
- осциллограф,
должна быть обязательно заземлена, иначе приборы не будут производить измерения или их показания окажутся неправильными.
Источник постоянного напряжения
(DC Voltage)
Все источники в Electronics Workbench идеальные. Внутреннее сопротивление идеального источника напряжения равно нулю, поэтому его выходное напряжение не зависит от нагрузки. Идеальный источник тока имеет бесконечно большое внутреннее сопротивление, поэтому его ток не зависит от сопротивления нагрузки.
ЭДС источника постоянного напряжения или батареи измеряется в Вольтах и задается произвольными величинами (от мкВ до кВ).
Источник переменного напряжения
(AC Voltage)
Действующее значение (root-mean-square-RMS) напря-жения источника измеряется в Вольтах и задается производными величинами (от мкВ до кВ). Имеется возможность установки частоты и начальной фазы.
Резистор
Сопротивление резистора измеряется в Омах и задается производными величинами (от Ом до МОм).
Конденсатор
Емкость конденсатора измеряется в Фарадах и задается производными величинами (от пФ до Ф).
Катушка индуктивности
Индуктивность катушки (дросселя) измеряется в Генри и задается производными величинами (от мкГн до Гн).
Для изменения величины пассивных компонентов (или модели транзисторов и интегральных микросхем) необходимо выполнить одну из следующих операций:
- Дважды щелкнуть левой кнопки мыши на изображении компонента схемы. При этом открывается окно параметров компонента, пример которого показан на рисунке 1.3.
Рисунок 1.3 – Окно изменения параметров резистора.
Щелкнуть правой кнопки мыши на изображении компонента и при появлении окна контекстного меню выбрать опцию Component Properties (свойства компонента). При этом также открывается окно параметров компонента (рисунок 1.3).
Для изменения величины компонента в линейке меню выбирается опция Value (величина). Далее, в соответствую-щих ячейках меняется значение и единица измерения компонента. При выборе опции Label можно указать обозначение элемента, которое будет явно указано на схеме.
Ключ, управляемый клавишей
Ключи могут быть замкнуты или разомкнуты при помощи управляющих клавиш на клавиатуре. В выключен-ном состоянии они представляют собой бесконечно большое сопротивление, во включенном состоянии их сопротивление равно нулю. Имя управляющей клавиши можно ввести с клавиатуры в диалоговом окне, появляющемся после двойного щелчка мышью на изображении ключа.
Используемые клавиши:
- буквы от A до Z,
- цифры от 0 до 9,
- клавиша Enter на клавиатуре,
- клавиша пробел [ Space ].
Операционный усилитель
Операционный усилитель (ОУ) – усилитель, предназначенный для работы с обратной связью. Он обычно имеет очень высокий коэффициент усиления по напряже-нию, высокое входное и низкое выходное сопротивление. Вход «плюс» является неинвертирующим, а вход «минус» - инвертирующим. Модель операционного усилителя позволяет задавать параметры: коэффициент усиления, напряжение смещения, входные токи, входное и выходное сопротивление.
Входные и выходные сигналы ОУ должны быть заданы относительно земли.
Операционный усилитель с пятью выводами
ОУ с пятью выводами имеет два дополнительных вывода (положительный и отрицательный) для подключения питания.
Для моделирования этого усилителя используется модель Буля-Коха-Педерсона. В ней учитываются эффекты второго порядка, ограничение выходного напряжения и тока.
Биполярные транзисторы
Биполярные транзисторы являются усилительными устройствами, управляемые током. Они бывают двух типов: p-n-p и n-p-n.
Буквы обозначают тип проводимости полупроводникового материала, из которого изготовлен транзистор. В транзисторах обоих типов стрелкой отмечается эмиттер, направление протекания тока.
Полевые транзисторы
Полевые транзисторы управляются напряжением на затворе, то есть ток, протекающий через транзистор, зависит от напряжения на затворе. Полевой транзистор включает в себя протяженную область полупроводника n-типа или p-типа, называемую каналом. Канал оканчивается двумя электродами, которые называются истоком и стоком. Кроме канала n-типа или p-типа, полевой транзистор включает в себя область с противоположным каналу типом проводимо-сти. Электрод, соединенный с этой областью, называется затвором. Для полевых транзисторов в Electronic Workbench выделено специальное поле компонентов FET. В программе имеются модели полевых транзисторов трех типов: транзи-сторов с управляющим p-n переходом (JFET) и двух типов транзисторов на основе металлооксидной пленки (МОП - транзисторы или MOSFET): МОП – транзисторы с встроен-ным каналом (Depletion MOSFETs) и МОП – транзисторы с индуцированным каналом (Enhancement MOSFETs).
Кроме описанных элементов, в Electronics Workbench имеется семь приборов, с многочисленными режимами работы, каждый из которых (за исключением амперметра и вольтметра) можно использовать в схеме только один раз. Эти приборы расположены на панели приборов (смотреть рисунок 1.1).
Слева на панели расположены приборы для формирования и наблюдения аналоговых величин: мультиметр, функциональный генератор, осциллограф, Боде – плоттер.
Справа расположены приборы для формирования и наблюдения логических величин: генератор слов, логический анализатор, логический преобразователь.
Осциллограф
Осциллограф, имитируемый программой Workbench, представляет собой аналог двухлучевого запоминающего осциллографа и имеет две модификации: простую и расширенную. Расширенная модификация по своим возможностям приближается к лучшим цифровым запоми-нающим осциллографам. Из-за того, что расширенная мо-дель занимает много мета на рабочем поле, рекомендуется начинать исследование простой моделью, а для подробного исследования процессов использовать расширенную модель.
Можно подключить осциллограф к уже включенной схеме или во время работы схемы переставить выводы к другим точкам – изображение на экране осциллографа изменится автоматически.
Остановить процесс расчета схемы в любой момент времени можно нажатием клавиши F9 или выбором Pause (Пауза) в меню Circuit. Продолжить расчет можно повторным нажатием клавиши F9 или выбором пункта Resume меню Circuit. Нажатие кнопки «Пуск» в правом верхнем углу экрана прекращает расчет схемы.
На схему выводится уменьшенное изображение осциллографа, общее для обеих модификаций. На этом изображении имеется четыре входных зажима:
Верхний правый зажим – общий.
Нижний правый – вход синхронизации, его назначение будет рассмотрено ниже.
Левый и правый нижние зажимы представляют собой соответственно вход канала А (channel A) и вход канала В (channel B).
Двойным щелчком мыши по уменьшенному изображе-нию открывается изображение передней панели простой модели осциллографа с кнопками управления, информации-онными полями и экраном. Ниже приведен соответствую-щий рисунок.
Для проведения измерений осциллограф нужно настроить, для чего следует задать:
- Расположение осей, по которым откладывается сигнал.
- Нужный масштаб развертка по осям.
- Смещение начала координат по осям.
- Режим работы по входу: закрытый или открытый.
- Режим синхронизации: внутренний или внешний.
Настройка осциллографа производится при помощи полей управления расположенных на панели управления (рисунок 1.4).
Рисунок 1.4 – Изображение простой модели осциллографа
Панель управления имеет общий для обеих модификаций осциллографа вид и разделена на четыре поля управления:
- Поле управления горизонтальной разверткой (масштаб времени).
- Поле управления синхронизацией (запуском).
- Поле управления каналом А.
- Поле управления каналом В.
Поле управления горизонтальной разверткой (масштабом времени) служит для задания масштаба горизонтальной оси осциллографа при наблюдении напряжения на входах каналов А и В в зависимости от времени. Временной масштаб задается в с/дел, мс/дел, мкс/дел, нс/дел (s/div, ms/div, mks/div, ns/div соответственно). Величина одного деления может быть установлена от 0,1 нс до 1 с. Масштаб может дискретно уменьшаться на один шаг при щелчке мышью на кнопке с изображением стрелки вниз, справа от поля и увеличиваться при щелчке мышью на кнопке с изображением стрелки вверх.
Чтобы получить удобное для наблюдения изображение на экране осциллографа, следует установить масштаб времени таким образом, чтобы цена двух делений на горизонтальной оси примерно была равна величине, обратно пропорциональной частоте исследуемого сигнала, то есть составляла бы период сигнала.
С помощь кнопок – стрелок направленных в разные стороны – вверх и вниз, расположенных на поле строки X POS, можно дискретно сдвигать начало осциллограммы по горизонтальной оси.
В этом же поле расположены три кнопки: Y/T, A/B, B/A, позволяющие задавать вид зависимости отображаемых сигналов. При нажатии на кнопку Y/T по вертикальной оси откладывается напряжение, по горизонтальной оси – время, при нажатии на кнопку А/В по вертикальной оси откладывается амплитуда напряжения на входе канала А, по горизонтальной оси – канала В и при нажатии на кнопку В/А наоборот. При этом масштаб осей определяется установками соответствующих каналов. В режимах А/В и В/А можно наблюдать частотные и фазовые сдвиги (фигуры Лиссажу), петли гистерезиса, вольтамперные характеристики.
Две нижние части панели осциллографа являются полями управления отображением сигналов, поданных на входы каналов А и В соответственно.
Верхнее окно в поле позволяет управлять масштабом оси отображаемого напряжения по вертикальной или горизонтальной оси. Цена деления может дискретно устанавливаться от 10 mv/div до 5 Kv/div. Масштаб для каждой оси устанавливается отдельно. Чтобы получить удобное для работы изображение на экране осциллографа перед началом эксперимента, следует установить масштаб, соответствующий ожидаемому напряжению.
Ниже расположено поле, которое позволяет дискретно сдвигать ось Х вверх или вниз. Для того, чтобы развести изображения от каналов А и В, можно воспользоваться сдвигом по оси Y (Y POS) для одного или двух каналов.
Три нижние кнопки реализуют различные режимы работы входа осциллографа по входу. Режим работы осциллографа с закрытым входом устанавливается нажатием на кнопку АС. В этом режиме на вход не пропускается постоянная составляющая сигнала. При нажатии на кнопку DС осциллограф переходит в режим с открытым входом. В этом режиме на вход осциллографа пропускается как постоянная, так и переменная составляющая сигнала. При нажатии на кнопку 0 вход осциллографа соединяется с общим выводом осциллографа, что позволяет определить положение нулевой отметки по оси Y.
Правое верхнее поле управления TRIGGER определяет момент начала отображения осциллограммы на экране осциллографа. Кнопки в строке EDGE задают момент запуска осциллограммы по фронту или срезу импульса на входе синхронизации. Поле LEVEL позволяет задавать уровень, при превышении которого происходит запуск осциллограммы. Значение уровня можно сдвинуть на три деления вверх и вниз.
Осциллограф имеет четыре режима синхронизации:
- Автоматический режим (AUTO) – запуск осцилло-грамммы производится автоматически при подключении осциллографа к схеме или при ее включении. Когда «луч» доходит до конца экрана, осциллограмма снова прописывается с начала экрана (новый экран).
- Режимы запуска по входу “А” или “В”, в которых запускающим сигналом является сигнал, поступающий на соответствующий вход.
- Режим «Внешний запуск» (EXT – external). В этом случае сигналом запуска является сигнал, подаваемый на вход синхронизации.
Нажатие клавиши EXPAND на панели простой модели открывает окно расширенной модификации осциллографа (рисунок 1.5).
Рисунок 1.5 – Окно расширенной модификации осциллографа
Панель расширенной модели осциллографа в отличие от простой модели расположена под экраном и дополнена тремя информационными табло, на которые выводятся результаты измерений. Кроме того, непосредственно под экраном находится линейка прокрутки, позволяющая наблюдать любой временной отрезок процесса от момента включения до момента выключения схемы. В сущности, расширенная модель осциллографа это совершенно другой прибор, позволяющий намного удобнее и более точно проводить численный анализ процессов.
На экране осциллографа расположены два курсора, обозначаемые 1 и 2, при помощи которых можно измерить мгновенные значения напряжений в любой точке осциллограммы. Для этого нужно перетащить мышью курсоры за треугольники в их верхней части в требуемое положение.
Координаты точек пересечения первого курсора с осциллограммой отображаются на левом табло, координаты второго курсора – на среднем табло. На правом табло отображаются значения разностей между соответствующи-ми координатами первого и второго курсоров. Результаты измерений, полученные при помощи расширенной модели осциллографа, можно записать в файл. Для этого надо нажать кнопку Save (Сохранить) и в диалоговом окне введите имя файла. Файлу присваивается расширение *. scp. Он представляет собой текстовый файл в ASСII кодах, в котором записаны данные о значениях напряжений в точках подключения осциллографа через интервал времени, равный масштабу горизонтальной развертки.
Чтобы вернуться к прежнему изображению осцилло-графа – следует нажать клавишу REDUSE, расположенную в правом нижнем углу.
Боде - плоттер
(построитель частотных характеристик)
Боде – плоттер используется для получения: амплитудно-частотных (АЧХ) и фазо-частотных (ФЧХ) характеристик схем.
Боде – плоттер измеряет отношение амплитуд сигналов в двух точках схемы и фазовый сдвиг между ними. Отношение амплитуд сигналов может измеряться в децибелах. Для измерения Боде – плоттер генерирует собственный спектр частот, диапазон которого может задаваться при настройке прибора. Частота любого переменного источника в исследуемой схеме игнорируется, однако схема должна включать какой либо источник переменного тока. Боде – плоттер имеет четыре зажима: два входных (IN) и два выходных (OUT). Для измерения отношения амплитуд или фазового сдвига нужно подключить положительные выводы входов IN и OUT (левые выводы соответствующих входов) к исследуемым точкам, а два других вывода заземлить.
При двойном щелчке мышью по уменьшенному изображению Боде – плоттера открывается его увеличенное изображение, которое приведено на рисунке 1.6.
Верхняя панель плоттера Режим (MODE) задает вид получаемой характеристики: АЧХ или ФЧХ. Для получения АЧХ нажмите кнопку MAGNITUDE, для получения ФЧХ – PHASE.
Левая панель управления (VERTIKAL) задает:
- начальное (I – initial) и конечное (F – final) значения параметров, откладываемых по вертикальной оси,
- вид шкалы вертикальной оси – логарифмическая ( LOG) или линейная (LIN).Правая панель управления (HORIZONTAL) настраивается аналогично.
Рисунок 1.6 – Увеличенное изображение Боде - плоттера
При получении АЧХ по вертикальной оси откладывает-ся отношение напряжений:
- в линейном масштабе от 0 до 10Е9;
- в логарифмическом масштабе от –200 dB до 200 dB.
При получении ФЧХ по вертикальной оси откладыва-ются градусы от -720° до 720°. По горизонтальной оси всегда откладывается частота в Герцах.
В начале горизонтальной шкалы расположен курсор. Его можно перемещать нажатием на кнопки со стрелками, расположенными справа от экрана, либо «тащить» с помощью мыши. Координаты точки пересечения курсора с графиком характеристики выводятся на информационных полях внизу справа.
Функциональный генератор
Генератор является идеальным источником напряже-ния, вырабатывающим сигналы синусоидальной, прямоу-гольной или треугольной формы.
Средний вывод генератора при подключении к схеме обеспечивает общую точку для отсчета амплитуды перемен-ного напряжения. Для отсчета напряжения относительно нуля общий вывод заземляют. Крайне правый и левый выводы служат для подачи переменного напряжения на схему. Напряжение на правом выводе изменяется в положи-тельном направлении относительно общего вывода, напря-жение на левом выводе – в отрицательном.
Двойным щелчком мыши на уменьшенном изображе-нии открывается увеличенное изображение генератора (рисунок 1.7).
Можно задать следующие параметры:
- частоту выходного напряжения,
- скважность,
- амплитуду выходного напряжения,
- постоянную составляющую выходного напряжения.
Рисунок 1.7 – Увеличенное изображение
функционального генератора
Чтобы выбрать требуемую форму выходного сигнала, надо нажать на кнопку с соответствующим изображением. Форму треугольного и прямоугольного сигналов можно изменить, уменьшая или увеличивая значение в поле DUTE CYCLE (скважность). Этот параметр определяется для сигналов треугольной и прямоугольной формы. Для треугольной формы напряжения он задает длительность (в процентах от периода сигнала) между интервалом нарастания напряжения и интервалом спада. Установив, например, значение 20, получим длительность интервала нарастания 20% от периода, а длительность интервала спада – 80%. Для прямоугольной формы напряжения этот параметр задает соотношение между длительностями и отрицательной части периода.
Частота генератора может регулироваться от 1 Hz до 999 MHz. Значение частоты устанавливается в строке FREQUENCY с помощью клавиатуры и кнопок со стрелка-ми. В левом поле устанавливается численное значение, в правом – единица измерения (Hz, kHz, MHz – Гц, кГц, МГц соответственно).
Амплитуда выходного напряжения может регулироваться от 0 mB до 999 кВ. Значение амплитуды устанавливается в строке AMPLITUDE с помощью клавиатуры и кнопок со стрелками. В левом поле устанавливается значение, в правом – единица измерения (mkV, mV, V, kV – мкВ, мВ, В, кВ соответственно).
Постоянная составляющая переменного сигнала устанавливается в строке OFFSET при помощи клавиатуры или кнопок со стрелками. Она может иметь как положительное, так и отрицательное значение. Это позво-ляяет получить, например, последовательность однополяр-ных импульсов.
Кроме перечисленных выше возможностей работы с приборами в программе Electronics Workbench существует такая дополнительная функция как Display Graphs. С помощью этой функции можно проанализировать результа-ты измерений с максимально возможной точностью, которой только можно достичь при использовании данной программы. Это особенно важно при анализе амплитудно-частотных, фазо-частотных, и переходных характеристик исследуемых схем. Функцию можно вызвать, щелкнув левой кнопкой мыши на пиктограмме (на панели инструментов),
-
- либо выбрав из основного меню функцию “ Analysis ” и “ Display Graphs ”.
Наиболее целесообразно данную функцию применять после того, как были получены результаты измерений с помощью какого-либо прибора. Тем самым Display Graphs служит дополнительным расширением функций стандартных приборов в Electronics Workbench.
Дата добавления: 2015-09-27 | Просмотры: 640 | Нарушение авторских прав
|