АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Автоматия сердца.
ФИЗИОЛОГИЯ СЕРДЦА
1. Автоматия сердца.
2. Возбудимость сердца.
3. Сократимость сердца.
4. Гемодинамическая функция сердца.
5. Регуляция сердечной деятельности.
Автоматия сердца.
Автоматия сердца – это его способность к ритмическому сокращению без всяких видимых раздражений под влиянием импульсов, возникающих в самом органе. Автоматия сердечной мышцы бывает миогенной – когда импульсы появляются в самих мышечных волокнах, и нейрогенной – когда импульсы возникают в клетках нервных ганглиев. Миогенная автоматия обеспечивает сокращения сердца на ранних стадиях эмбрионального развития, а также некоторое время (несколько часов и даже суток) после перерезки всех идущих к сердцу нервов.
В постэмбриональный период ритмическая деятельность сердца происходит благодаря наличию проводящей системы сердца. Так, в области ушка правого предсердия находится ведущий центр автоматизма — синусно-предсердного (синатриального) узла. Он является главным центром автоматии сердца – пейсмекером первого порядка. От него по рабочим клеткам миокарда и проводящим волокнам предсердий возбуждение достигает предсердно-желудочкового (атриовентрикулярного) узла, расположенного в стенке правого предсердия вблизи перегородки между предсердиями и желудочками. Этот узел является пейсмекером второго порядка. Далее возбуждение переходит на миокард желудочков по волокнам пучка Гиса (предсердно-желудочкового пучка) и достигает волокон Пуркинье (сердечных проводящих миоцитов).
В обычных условиях частоту активности миокарда всего сердца в целом определяет синусно-предсердный узел. При нарушении автоматизма синусно-предсердного узла ритмические сокращения сердца могут продолжаться благодаря импульсам, возникающим в атриовентрикулярном узле. Однако частота и сила сокращений при этом вдвое меньше, чем до нарушений в области синусно-предсердного узла. В случае невозможности передачи возбуждения к желудочкам они начинают сокращаться в ритме пейсмекеров третьего порядка – клеток пучка Гиса и волокон Пуркинье. При повреждении всех водителей ритма сердце останавливается (искусственные кардиостимуляторы).
Синусно-предсердный узел подчиняет себе все нижележащие образования проводящей системы, навязывая им свой ритм. Поэтому все отдельные части проводящей системы, хотя и имеют собственную активность, начинают работать в едином ритме. Явление, при котором структуры с замедленным ритмом генерации потенциалов усваивают более частый ритм других пейсмекерных участков называют усвоением ритма. Исходя из этого Гаскелл установил Закон градиента автоматизма сердца – у всех позвоночных степень автоматии тем выше, чем ближе расположен участок проводящей системы к синоатриальному узлу.
Теории автоматизма. Существует несколько теорий, объясняющих происхождение автоматизма (нейрогенная, эндогенная и др.). Наиболее популярна теория диастолического поля, в соответствии с которой в начальную фазу диастолы в проводящих миоцитах регистрируется мембранный потенциал, равный -90 мВ. В диастолу метаболизм сердечной мышцы изменяется и МП постепенно уменьшается, постепенно достигая критического уровня деполяризации. Когда уровень потенциала покоя уменьшается по сравнению с исходным приблизительно на 2 мВ, наступает резкое увеличение проницаемости мембраны вначале для Na+, а позднее для Са2+. В результате этих процессов МП приближается к критическому уровню деполяризации, при достижении которого в клетках синусно-предсердного узла возникает ПД. Все остальные отделы сердца подчиняются возникшему ПД — возбуждению, генерируемому в водителе ритма.
Дата добавления: 2015-12-15 | Просмотры: 840 | Нарушение авторских прав
|