АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Общая физиология возбудимых тканей. 1. Мембраны в основном состоят из липидов и белков, количество которых неодинаково у разных типов клеток
1. Мембраны в основном состоят из липидов и белков, количество которых неодинаково у разных типов клеток. Сложность изучения молекулярных механизмов функционирования клеточных мембран обусловлена тем, что при выделении и очистке клеточных мембран нарушается их нормальное функционирование. В настоящее время можно говорить о нескольких видах моделей клеточной мембраны, среди которых наибольшее распространение получила жидкостно-мозаичная модель.Согласно этой модели, мембрана представлена бислоем фосфолипидных молекул, ориентированных таким образом, что гидрофобные концы молекул находятся внутри бислоя, а гидрофильные направлены в водную фазу (рис. 2.1). Такая структура идеально подходит для образования раздела двух фаз: вне- и внутриклеточной. В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул. Некоторые белковые молекулы свободно диффундируют в плоскости липидного слоя; в обычном состоянии части белковых молекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения. Здесь описана только общая схема строения клеточной мембраны и для других типов клеточных мембран возможны значительные различия. Электрические характеристики мембран. Особая морфология клеточных мембран определяет их электрические характеристики, среди которых наиболее важными являются емкость и проводимость. Емкостные свойства в основном определяются фосфолипидным бислоем, который непроницаем для гидратированных ионов и в то же время достаточно тонок (около 5 нм), чтобы обеспечивать эффективное разделение и накопление зарядов и электростатическое взаимодействие катионов и анионов. Кроме того, емкостные свойства клеточных мембран являются одной из причин, определяющих временные характеристики электрических процессов, протекающихщих на клеточных мембранах. Проводимость (g) — величина, обратная электрическому сопротивлению и равная отношению величины общего трансмембранного тока для данного иона к величине, обусловившей его трансмембранной разности потенциалов. Через фосфолипидный бислой могут диффундировать различные вещества, причем степень проницаемости (Р), т. е. способность клеточной мембраны пропускать эти вещества, зависит от разности концентраций диффундирующего вещества по обе стороны мембраны, его растворимости в липидах и свойств клеточной мембраны. Скорость диффузии для заряженных ионов в условиях постоянного поля в мембране определяется подвижностью ионов, толщиной мембраны, распределением ионов в мембране. Для неэлектролитов проницаемость мембраны не влияет на ее проводимость, поскольку неэлектролиты не несут зарядов, т. е. не могут переносить электрический ток. Проводимость мембраны является мерой ее ионной проницаемости. Увеличение проводимости свидетельствует об увеличении количества ионов, проходящих через мембрану.
ФУНКЦИИ:
1.Барьерная функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии. При этом мембрана принимает участие в механизмах электрогенеза. К ним относятся механизмы создания потенциала покоя, генерация потенциала действия, механизмы распространения биоэлектрических импульсов по однородной и неоднородной возбудимым структурам.
2.Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («посредников»).
3.Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).
4.Высвобождение нейромедиаторов в синаптических окончаниях.
5.На ее поверхности протекает большинство биохимических реакций.
6.Мембрана координирует и регулируют физические процессы в клетке.
7.мембрана играет важную роль в образовании межклеточных контактов.
По способу активации выделяют:
потенциал-активируемые ионные каналы (переход из закрытого в открытое состояние и обратно осуществляется конформацией белковой молекулы при изменении потенциала мембраны). Примером может служить потенциал-зависимый натриевый канал, определяющий деполяризацию клетки при генерации потенциала действия.
механочувствительные ионные каналы (открываются при воздействии на мембрану клетки механического стимула, например, при активации механорецепторов кожи).
лиганд-активируемые ионные каналы. По способу активации они подразделены на две группы (экстраклеточные и внутриклеточные) в зависимости от того, с какой стороны мембраны воздействует лиганд. Если стимул (например, ацетилхолин) при осуществлении синаптической передачи возбуждения в нервно-мышечном синапсе действует на рецептор (в данном примере холинорецептор, представляющий собой одну из нескольких белковых субъединиц ионного канала), расположенный на внешней поверхности мембраны мышечной клетки, откроется ионный канал, проницаемый для катионов. Если лиганд-активируемые каналы зависят от вторичных посредников в клетке, их переход в открытое состояние осуществляется при изменении концентрации определенных ионов в цитоплазме. Примером может служить кальций-активируемый калиевый канал, активирующийся при увеличении концентрации ионов кальция в клетке. Такие каналы принимают участие в реполяризации мембраны при завершении потенциала действия.
Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. В состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Na+ внутрь клетки. Через несколько миллисекунд после открытия m-ворот происходит закрытие п-ворот, расположенных у выхода натриевых каналов (инактивация) (рис. 2.4). Инактивация развивается в клеточной мембране очень быстро и степень инактивации зависит от величины и времени действия деполяризующего стимула.
Кроме натриевых, в клеточных мембранах установлены другие виды каналов, избирательно проницаемых для отдельных ионов: К+, Са2+, причем существуют разновидности каналов для этих ионов (см. табл. 2.1).
Свойство проводимости различных каналов неодинаково. В частности, для калиевых каналов процесс инактивации, как для натриевых каналов, не существует. Имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-кальцийзависимых каналов ускоряет реполяризацию, тем самым восстанавливая исходное значение потенциала покоя.
Особый интерес представляют кальциевые каналы.
Входящий кальциевый ток, как правило, недостаточно велик, чтобы нормально деполяризовать клеточную мембрану. Чаще всего поступающий в клетку кальций выступает в роли «мессенджера», или вторичного посредника. Активация кальциевых каналов обеспечивается деполяризацией клеточной мембраны, например входящим натриевым током.
Процесс инактивации кальциевых каналов достаточно сложен. С одной стороны, повышение внутриклеточной концентрации свободного кальция приводит к инактивации кальциевых каналов. С другой стороны, белки цитоплазмы клеток связывают кальций, что позволяет поддерживать длительное время стабильную величину кальциевого тока, хотя и на низком уровне; при этом натриевый ток полностью подавляется. Кальциевые каналы играют существенную роль в клетках сердца.
Электровозбудиые: раздражитель (электрический ток) -> сдвиг мембранного потенциала(до критического потенциала) -> активация потенциалуправляемых ионных каналов -> изменение ионной проницаемости мембраны -> изменение ионных токов через мембрану -> дальнейший сдвиг мембранного потенциала(ответ в виде формирования потенциала действия)
Хемовозбудимые: раздражитель(химическое вещество) -> химическое связывание раздражителя и рецептора хемоуправляемого ионного канала -> изменение конформации лигандрецепторного комплекса и открытие рецептруправляемых(хемоуправляемых) ионных каналов-> изменение ионной проницаемости мембраны -> изменение ионных токов через мембрану -> дальнейший сдвиг мембранного потенциала(ответ в виде формирования потенциала действия)
Механовозбудимые: раздражитель (механический стресс)-> изменение натяжения мембраны -> открытие механоуправляемых ионных каналов -> -> изменение ионной проницаемости мембраны -> изменение ионных токов через мембрану -> дальнейший сдвиг мембранного потенциала(ответ в виде формирования потенциала действия)
2. Все клетки имеют свой электрический заряд, который формируется в результате неодинаковой проницаемости мембраны для различных ионов. Клетки возбудимых тканей (нервная, мышечная, железистая) отличаются тем, что они под действием раздражителя меняют проницаемость своей мембраны для ионов, в результате чего ионы очень быстро транспортируются согласно электрохимическому градиенту. Это и есть процесс возбуждения. Его основой является потенциал покоя. Потенциал покоя – относительно стабильная разность электрических потенциалов между наружной и внутренней сторонами клеточной мембраны. Его величина обычно варьирует в пределах от -30 до -90 мВ. Внутренняя сторона мембраны в покое заряжена отрицательно, а наружная – положительно из-за неодинаковых концентраций катионов и анионов внутри и вне клетки.
основную роль в создании отрицательного заряда внутри клетки играют ионы K+ и высокомолекулярные внутриклеточные анионы, главным образом они представлены белковыми молекулами с отрицательно заряженными аминокислотами (глутамат, аспартат) и органическими фосфатами. Эти анионы, как правило, не могут транспортироваться через мембрану, создавая постоянный отрицательный внутриклеточный заряд. Во всех точках клетки отрицательный заряд практически одинаков. Заряд внутри клетки является отрицательным как абсолютно (в цитоплазме анионов больше, чем катионов), так и относительно наружной поверхности клеточной мембраны. Абсолютная разность невелика, однако этого достаточно для создания электрического градиента. Обеспечивающим формирование потенциала покоя (ПП), является K+. В покоящейся клетке устанавливается динамическое равновесие между числом входящих и выходящих ионовK+. Это равновесие устанавливается тогда, когда электрический градиент уравновесит концентрационный. Согласно концентрационному градиенту, создаваемому ионными насосами, K+ стремится выйти из клетки, однако отрицательный заряд внутри клетки и положительный заряд наружной поверхности клеточной мембраны препятствуют этому (электрический градиент). В случае равновесия на клеточной мембране устанавливается равновесный калиевый потенциал. В покое вход Na+ в клетку низкий (намного ниже, чем K+), но он уменьшает мембранный потенциал. Влияние Cl- противоположно, так как это анион. Отрицательный внутриклеточный заряд не позволяет большому количеству Cl- проникнуть в клетку, поэтому Cl- это в основном внеклеточный анион. Как внутри клетки, так и вне ее Na+ и Cl- нейтрализуют друг друга, вследствие чего их совместное поступление в клетку не оказывает существенного влияния на величину потенциала покоя.
Наружная и внутренняя стороны мембраны несут на себе собственные электрические заряды, преимущественно с отрицательным знаком. Это полярные составляющие мембранных молекул – гликолипидов, фосфолипидов, гликопротеинов. Ca2+, как внеклеточный катион, взаимодействует с наружными фиксированными отрицательными зарядами, а также с отрицательными карбоксильными группами интерстиция, нейтрализуя их, что приводит к увеличению и стабилизации потенциала покоя.
Для создания и поддержания электрохимических градиентов необходима постоянная работа ионных насосов. Ионный насос – это транспортная система, обеспечивающая перенос иона вопреки электрохимическому градиенту, с непосредственными затратами энергии. Градиенты Na+ и K+ поддерживаются с помощью Na/K – насоса. Сопряженность транспорта Na+ и K+ примерно в 2 раза уменьшает энергозатраты. В целом же траты энергии на активный транспорт огромны: лишь Na/K – насос потребляет около 1/3 всей энергии, расходуемой организмом в покое. 1АТФ обеспечивает один цикл работы – перенос 3 Na+ из клетки, и 2 K+ в клетку. Асимметричный перенос ионов способствует заодно формированию и электрического градиента (примерно 5 – 10мВ).
Активный транспорт- с затратой энергии АТФ, против концентрационного и электрического градиента(насосы)
-первичный(включает перенос отдельных ионов вопреки концентрационному и электрическому градиентам с помощью специальных ионных насосов, микровезикулярный транспорт(эндоцитоз, экзоцитоз, трансцитоз)и фильтрацию.
-вторичный(он осуществляется за счет энергии, запасенной ранее, которая создается в виде электрического и концентрационного градиентов, т. е. тоже в результате расхода энергии, поэтому называть его пассивным необоснованно, хотя частицы движутся согласно законам диффузии.)
Пассивный транспорт- без затраты энергии по концентрационному и электрическому градиенту.
-простая диффузия(ионные каналы)
-облегченная диффузия(белки-переносчики)
-осмос
В результате непрерывного перемещения различных ионов через клеточную мембрану их концентрация внутри и вне клетки постепенно должна выравниваться. Имеется активный механизм поддержания градиентов концентрации различных ионов внутри и вне клетки. Им являются ионные насосы, в частности Na/K- насос.
Ионный насос - обладающая АТФ-азной активностью молекула интегрального белка, обеспечивающая перенос ионов через мембрану с непосредственной затратой энергии вопреки концентрационному и электрическому градиентам.выведение Na+ сопряжено с транспортом К+, что мжно продемонстрировать при адалении К+ из наружного раствора. Если К+ вне клетки нет, работа насоса блокируется, перенос Na+ из клетки в этом случае падает,составляя примерно 30% от нормально уровня. Накопление Na+ в клетке стимулирует работу насоса, уменьшение Na+ в клетке снижает его активность, поскольку снижается вероятность контакта ионов с соответствующим переносчиком. В результате сопряженного транспорта Na+ K+ поддерживается постоянная разность концентраций этих ионов внутри и вне клетки. Одна молекула АТФ- обеспечивает один цикл работы Na/K насоса: перенос трех ионов Na+ за пределы клетки и двух ионов К+ внутрь клетки. Такой ассиметричный перенос ионов поддерживает избыток положительно заряженных частиц вне клетки и отрицательных зарядов внутри клетки,что позволяет считать Na/K насос структурной электрогенной,дополнительно увеличивающей потенциал покоя примерно на несколько милливольт.
Блокаторы - это вещества, препятствующее работе ионного канала, например, взаимодействию медиатора с молекулярным рецептором к нему и, следовательно, нарушающие управление каналом, блокирующие его. Например, действие ацетилхолина блокируют холиноблокаторы; норадреналина с адреналином - адреноблокаторы; гистамина - гистаминоблокаторы и т. д. Многие блокаторы применяются в терапевтических целях как лекарственные препараты.
Блокаторы - это вещества, препятствующее работе ионного канала, например, взаимодействию медиатора с молекулярным рецептором к нему и, следовательно, нарушающие управление каналом, блокирующие его. Например, действие ацетилхолина блокируют холиноблокаторы; норадреналина с адреналином - адреноблокаторы; гистамина - гистаминоблокаторы и т. д. Многие блокаторы применяются в терапевтических целях как лекарственные препараты.
3.
Два основных класса рецепторов — это метаботропные рецепторы и ионотропные рецепторы.
Ионотропные рецепторы представляют собой мембранные каналы, открываемые или закрываемые при связывании с лигандом. Возникающие при этом ионные токи вызывают изменения трансмембранной разности потенциалов и, вследствие этого, возбудимости клетки, а так же меняют внутриклеточные концентрации ионов, что может вторично приводитъ к активации систем внутриклеточных посредников. Одним из наиболее полно изученных ионотропных рецепторов является н-холинорецептор.
Метаботропные рецепторы связаны с системами внутриклеточных посредников. Изменения их конформации при связывании с лигандом приводит к запуску каскада биохимических реакций, и, в конечном счете, измемению функционального состояния клетки.
Рецепторы, связанные с гетеротримерными G-белками (например, рецептор вазопрессина).
Рецепторы, обладающие внутренней тирозинкиназной активностью (например, рецепторинсулина).
Внутриклеточные рецепторы-факторы транскрипции (например, рецепторы глюкокортикоидов).
Рецепторы, связанные с G-белками, представляют собой трансмембранные белки, имеющие 7 трансмембранных доменов, внеклеточный N-конец и внутриклеточный C-конец. Сайт связывания с лигандом находится на внеклеточных петлях, домен связывания с G-белком — вблизи C-конца в цитоплазме.
Активация рецептора приводит к тому, что его α-субъединица диссоциирует от βγ-субъединичного комплекса и таким образом активируется. После этого она либо активирует, либо наоборот инактивирует фермент, продуцирующий вторичные посредники.
Рецепторы с тирозинкиназной активностью фосфорилируют последующие внутриклеточные белки, часто тоже являющиеся протеинкиназами, и таким образом передают сигнал внутрь клетки. По структуре это — трансмембранные белки с одним мембранным доменом. Как правило, гомодимеры, субъединицы которых связаны дисульфидными мостиками. Внутриклеточные рецепторы после связывания с гормоном переходят в активное состояние, транспортируются в ядро клетки, там связываются с ДНК и либо индуцируют, либо супрессируют экспрессию некоторого гена или группы генов.
Имеется несколько видов G-белков (GS, Gi,Gq,GO), которые влияют на ферменты (например, аденилатциклазу, фосфолипазу С), образующие различные вторые посредники (например, цАМФ, инозитолтрифосфат, диацилглицерол). При этом G-белки могут как активировать (GS), так и ингибировать (Gi) образование вторых посредников. Вторые посредники, в свою очередь, активируют соответствующие им протеинкиназы, фосфорилирующие различные клеточные белки по остаткам серина и треонина, что изменяет их функциональную активность (чаще увеличивает). Наряду с этим активированные G-белки оказывают выраженное влияние на проницаемость кальциевых и калиевых каналов мембраны.
4 вопрос Мембранный потенциал (или потенциал покоя) – это разность потенциалов между наружной и внутренней поверхностью мембраны в состоянии относительного физиологического покоя. Потенциал покоя возникает в результате двух причин: 1) неодинакового распределения ионов по обе стороны мембраны; 2) избирательной проницаемости мембраны для ионов. В состоянии покоя мембрана неодинаково проницаема для различных ионов. Клеточная мембрана проницаема для ионов K, малопроницаема для ионов Na и непроницаема для органических веществ. За счет этих двух факторов создаются условия для движения ионов. Это движение осуществляется без затрат энергии путем пассивного транспорта – диффузией в результате разности концент-рации ионов. Ионы K выходят из клетки и увеличивают положительный заряд на наружной поверхности мембраны, ионы Cl пассивно переходят внутрь клетки, что приводит к увеличению положительного заряда на наружной поверхности клетки. Ионы Na накапливаются на наружной поверхности мембраны и увеличивают ее положительный заряд. Органические соединения остаются внутри клетки. В результате такого движения наружная поверхность мембраны заряжается положительно, а внутренняя – отрицательно. Внутренняя поверхность мембраны может не быть абсолютно отрицательно заряженной, но она всегда заряжена отрицательно по отношению к внешней. Такое состояние клеточной мембраны называется состоянием поляризации. Движение ионов продолжается до тех пор, пока не уравновесится разность потенциалов на мембране, т. е. не наступит электрохимическое равновесие. Момент равновесия зависит от двух сил: 1) силы диффузии; 2) силы электростатического взаимодействия. Значение электрохимического равновесия: 1) поддержание ионной асимметрии; 2) поддержание величины мембранного потенциала на постоянном уровне. В возникновении мембранного потенциала участвуют сила диффузии (разность концентрации ионов) и сила электростатического взаимодействия, поэтому мембранный потенциал называется концентра-ционно-электрохимическим. Для поддержания ионной асимметрии электрохимического равновесия недостаточно. В клетке имеется другой механизм – натрий-калиевый насос. Натрий-калиевый насос – механизм обеспечения активного транспорта ионов. В клеточной мембране имеется система переносчиков, каждый из которых связывает три иона Na, которые находятся внутри клетки, и выводит их наружу. С наружной стороны переносчик связывается с двумя ионами K, находящимися вне клетки, и переносит их в цитоплазму. Энергия берется при расщеплении АТФ. Любая живая клетка поддерживает на мембране определенной величины потенциал. Его величина колеблется в значительных пределах, у нервных и мышечных клеток его величина составляет обычно 60 - 90 мВ, у других тканей не превышает 10 мВ. Различные внешние воздействия, способные изменяющие ионную проницаемость мембраны (то есть повлиять на воротный механизм канала), вызывают изменения величины ПП. Его уменьшение называется деполяризацией, а увеличение - гиперполяризацией мембраны
5 вопрос Возбужде́ние в физиологии — ответ ткани на раздражение, проявляющийся помимо неспецифических реакций (генерация потенциала действия, метаболические изменения) в выполнении специфической для этой ткани функции; возбудимыми являются нервная (проведение возбуждения), мышечная (сокращение) и железистая (секреция) ткани. Возбудимость — свойство клеток отвечать на раздражение возбуждением. Реакция клеток, тканей на раздражитель определяется законами раздражения 1. Закон "все или ничего": При допороговых раздражениях клетки в ткани ответной реакции не возникает. При пороговой силе раздражителя развивается максимальная ответная реакция, поэтому увеличение силы раздражения выше пороговой не сопровождается ее усилением. В соответствии с этим законом реагирует на раздражения одиночное нервное и мышечное волокно, сердечная мышца. 2. Закон силы: Чем больше сила раздражителя, тем сильнее ответная реакция. Однако выраженность ответной реакции растет лишь до определенного максимума. Закону силы подчиняется целостная скелетная, гладкая мышца, так как они состоят из многочисленных мышечных клеток, имеющих различную возбудимость. 3. Закон силы-длительности. Между силой и длительностью действия раздражителя имеется определенная взаимосвязь. Чем сильнее раздражитель, тем меньшее время требуется для возникновения ответной реакции. Зависимость между пороговой силой и необходимой длительностью раздражения отражается кривой силы длительности. По этой кривой можно определить ряд параметров возбудимости. а) Порог раздражения - это минимальная сила раздражителя, при которой возникает возбуждение. б) Реобаза - это минимальная сила раздражителя, вызывающая возбуждение при его действии в течение неограниченно долгого времени. На практике порог и реобаза имеют одинаковый смысл. Чем ниже порог раздражения или меньше реобаза, тем выше возбудимость ткани. в) Полезное время - минимальное время действия раздражителя силой в одну реобазу за которое возникает возбуждение. г) Хронаксия - это минимальное время действия раздражителя силой в две реобазы, необходимое для возникнов4. Закон градиента или аккомодации. Реакция ткани на раздражение зависит от его градиента, т.е. чем быстрее нарастает сила раздражителя во времени тем быстрее возникает ответная реакция. При низкой скорости нарастания силы раздражителя растет порог раздражения. Поэтому если сила раздражителя, возрастает очень медленно возбуждения не будет. Это явление называется аккомодацией. Физиологическая лабильность (подвижность) - это большая или меньшая частота реакций, которыми может отвечать ткань на ритмическое раздражение. Чем быстрее восстанавливается ее возбудимость после очередного раздражения, тем Выше ее лабильность. Определение лабильности предложено Н.Е.Введенским. Наибольшая, лабильность у нервов, наименьшая у сердечной мышцы. ения возбуждения. Действие постоянного тока на возбудимые ткани. •возбудимость повышается, а под положительным - анодом снижается. Это называется законом действия постоянного Тока. Изменение возбудимости ткани (например: нерва) под действием постоянного тока в области анода или катода называется физиологическим электротоном. В настоящее время установлено, что под действием отрицательного электрода - катода потенциал мембраны клеток снижается. Это явление называется физическим катэлектротоном, Под положительным - анодом, он возрастает. Возникает физический катэлектртон. Так как, под катодом мембранный потенциал приближается к критическому уровню деполяризации, возбудимость клеток и тканей повышается. Под анодом мембранный потенциал возрастает и удаляется от критического уровня деполяризации, поэтому возбудимость клетки, ткани падает. Следует отметить, что при очень кратковременном действии постоянного тока (1 мсек и менее)МП не успевает измениться, поэтому не изменяется и возбудимость ткани под электродами. Критический уровень деполяризации (Ек)- это та разность потенциалов, которая должна быть достигнута, чтобы местные изменения перешли в пик потенциала действия. Ек - пороговая величин
6 вопрос Фаза деполяризации возникает в результате лавинообразного движения Nа+ внутрь клетки. Этому способствуют две причины: открываются потенциалзависимые Nа+-каналы. В этом случае происходит деполяризация по типу процесса с положительной обратной связью (самоподкрепляющийся процесс). Освобождение натриевых каналов от Са2+. Заряд клеточной мембраны сначала снижается до 0 (это собственно деполяризация), а затем меняется на противоположный (инверсия или овершут). Для характеристики фазы деполяризации вводится понятие реверсии - это та разность потенциалов, на которую потенциал действия превышает потенциал покоя. Р (реверсия)- это то количество мВ на которое произошла перезарядка мембраны. Фаза деполяризации продолжается до достижения электрохимического равновесия по Nа+. Затем наступает следующая фаза. Амплитуда потенциала действия не зависит от силы раздражителя. Она зависит от концентрации Nа+ (как снаружи, так и внутри клетки), от количества натриевых каналов, особенностей натриевой проницаемости. Фаза реполяризации характеризуется: снижением проницаемости клеточной мембраны для Nа+ (Nа-инактивация). Натрий накапливается на наружной поверхности клеточной мембраны; возрастает проницаемость мембраны для К+, в результате повышается выход К+ из клетки с увеличением положительного заряда на мембране; изменение активности Nа+-К+ насоса. Реполяризация - это процесс восстановления заряда мембраны. Но полного восстановления нет, т. к. возникают следовые потенциалы. Гиперполяризация – при частом возбуждении канал не успевает захлопнуться, калий выходит из клетки, мембрана становится более электроотрицателной. Так как в формировании потенциала покоя мембраны участвуют многие ионы, равновесие клетки может нарушаться посредством изменений проводимости различных ионов. Так, например, при дополнительном выходящем токе ионов К+ или при входящем токе ионов Сl может увеличиваться потенциал покоя мембраны, это означает что она гиперполяризуется. Гиперполяризация мембраны - противоположность возбуждения, т.е. определенные химические процессы на постсинаптической мембране могут вызывать торможение нейрона.
7. Потенциал действия – это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны.
При действии порогового или сверхпорогового раздражителя изменяется проницаемость клеточной мембраны для ионов в различной степени. Для ионов Na она повышается в 400–500 раз, и градиент нарастает быстро, для ионов К – в 10–15 раз, и градиент развивается медленно. В результате движение ионов Na происходит внутрь клетки, ионы К двигаются из клетки, что приводит к перезарядке клеточной мембраны. Наружная поверхность мембраны несет отрицательный заряд, внутренняя – положительный.
Стадия покоя. Эта стадия представлена мембранным потенциалом покоя, который предшествует потенциалу действия. Мембрана во время этой стадии поляризована в связи с наличием отрицательного мембранного потенциала
Фаза деполяризации. В это время мембрана внезапно становится высокопроницаемой для ионов натрия, позволяя огромному числу положительно заряженных ионов натрия диффундировать внутрь клетки. Нормальное поляризованное состояние немедленно нейтрализуется поступающими внутрь положительно заряженными ионами натрия, в результате потенциал стремительно нарастает в положительном направлении. Этот процесс называют деполяризацией,
Фаза реполяризации. В течение нескольких долей миллисекунды после резкого повышения проницаемости мембраны для ионов натрия, натриевые каналы начинают закрываться, а калиевые — открываться. В результате быстрая диффузия ионов калия наружу восстанавливает нормальный отрицательный мембранный потенциал покоя. Этот процесс называют реполя-ризацией мембраны.
Изменения мембранного потенциала,следующие за пиком потэнциала действия,называют СЛЕДОВЫМИ ПОТЕНЦИАЛАМИ.
Различают 2 вида следовых потенциалов-следовую деполяризацию и следовую гиперполяризацию.Амплитуда следовых потенциалов обычно не превышает нескольких милливольт,а длительность их у различных волокон составляет от нескольких миллисекунд до десятков и сотен секунд.
Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые.
Процессы метаболизма в безмиелиновых волокнах не обеспечивают быструю компенсацию расхода энергии. Распространение возбуждения будет идти с постепенным затуханием – с декрементом. Декрементное поведение возбуждения характерно для низкоорганизованной нервной системы. Возбуждение распространяется за счет малых круговых токов, которые возникают внутрь волокна или в окружающую его жидкость. Между возбужденными и невозбужденными участками возникает разность потенциалов, которая способствует возникновению круговых токов. Ток будет распространяться от «+» заряда к «—». В месте выхода кругового тока повышается проницаемость плазматической мембраны для ионов Na, в результате чего происходит деполяризация мембраны. Между вновь возбужденным участком и соседним невозбужденным вновь возникает разность потенциалов, что приводит к возникновению круговых токов. Возбуждение постепенно охватывает соседние участки осевого цилиндра и так распространяется до конца аксона.
В миелиновых волокнах благодаря совершенству метаболизма возбуждение проходит, не затухая, без декремента. За счет большого радиуса нервного волокна, обусловленного миелиновой оболочкой, электрический ток может входить и выходить из волокна только в области перехвата. При нанесения раздражения возникает деполяризация в области перехвата А, соседний перехват В в это время поляризован. Между перехватами возникает разность потенциалов, и появляются круговые токи. За счет круговых токов возбуждаются другие перехваты, при этом возбуждение распространяется сальтаторно, скачкообразно от одного перехвата к другому. Сальтаторный способ распространения возбуждения экономичен, и скорость распространения возбуждения гораздо выше (70—120 м/с), чем по безмиелиновым нервным волокнам (0,5–2 м/с).
Возникновению потенциала действия предшествует в точке раздражения мышцы или нерва активные под пороговые изменения мембранного потенциала. Они проявляются в форме локального (местного) ответа.
8. Для локального ответа характерны:
1) зависимость от силы раздражения
2) нарастание постепенно величины ответа.
3) нераспространение по нервному волокну.
Первые признаки локального ответа обнаруживаются при действии стимулов составляющих 50-70% пороговой величины. Локальный ответ как и потенциал действия обусловлен повышением натриевой проницаемости. Однако это повышение было недостаточно, чтобы вызвать потенциал действия.
Потенциал действия возникает когда деполяризация мембраны достигнет критического уровня. Но локальный ответ важен. Он подготавливает ткани к последующим воздействиям.
Дата добавления: 2015-12-15 | Просмотры: 634 | Нарушение авторских прав
|