АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Патогенез. Известны два механизма патогенеза, касающиеся как самой молекулы ДНК, так и молекул белков, входящих в состав хроматина хромосом

Прочитайте:
  1. V.Этиология и патогенез.
  2. XII. Этиология и патогенез
  3. Адаптація і компенсація в патогенезі.
  4. Ангины: 1) определение, этиология и патогенез 2) классификация 3) патологическая анатомия и дифференциальная диагностика различных форм 4) местные осложнения 5) общие осложнения
  5. Анемії: класифікація, етіологія, патогенез, їх характеристика.
  6. Аппендицит: 1) этиология и патогенез 2) классификация 3) патоморфология различных форм острого аппендицита 4) патоморфология хронического аппендицита 5) осложнения
  7. Болезнь Паркинсона, патогенез, клиника, принципы лечения. Другие проявления гипокинетически-гипертонических нарушений.
  8. Ботулизм, патогенез, микробиологическая диагностика. Специфическая профилактика и терапия ботулизма.
  9. Бронхиальная астма: 1) этиология, патогенез 2) классификация 3) патоморфология острого периода 4) патоморфология при повторяющихся приступах 5) осложнения и причины смерти.
  10. Бронхоэктатическая болезнь: 1) этиология и патогенез 2) макроскопическая картина 3) микроскопические признаки 4) изменения в легочной паренхиме 5) осложнения и причины смерти

Известны два механизма патогенеза, касающиеся как самой молекулы ДНК, так и молекул белков, входящих в состав хроматина хромосом, подверженных импринтингу.

Первый механизм - это нарушение метилирования импринтированных генов. В настоящее время хорошо изучена эпигенетическая модификация или специфическое метилирование цитозиновых остатков ДНК по 5-му углеродному атому. Это единственная допустимая в физиологических условиях химическая модификация, стабильно сохраняющаяся в ряду клеточных поколений и прямо или косвенно влияющая на экспрессию генов. У человека дифференцированное метилирование родительских аллелей наблюдается, как правило, внутри или рядом с ГЦ-богатыми районами, содержащими разные типы нуклеотидных повторов, между которыми нет гомологии, а длина единицы повтора каждый раз другая, и возможно его любое расположение по отношению к импринтированному гену, промотору или регуляторному участку. По-видимому, такие повторы вовлекаются в установку процесса импринтинга (метилирования гена). Они

 

служат мишенями для маркирования определенного аллеля за счет организации уникальной для него вторичной структуры ДНК. Так, показано, что эти повторы создают свернутые структуры, узнаваемые гетерохроматинспецифическими белками. Например, метилирование CpG-районов изменяет структуру ДНК с образованием формы z-ДНК, что ведет к полной инактивации импринтированных генов.

Второй механизм связан с особенностями структурной организации и функционирования хроматина в локусах, в которых располагаются импринтированные гены. В пользу этого указывают результаты экспериментов по изучению времени репликации импринтированных хромосомных доменов в S-фазе митоза. В частности, до репликации в клеточном ядре наблюдаются два гибридизационных сигнала, соответствующих материнскому и отцовскому аллелям импринтированного гена, а после репликации такой сигнал приобретает сдвоенную структуру. Асинхронность вычисляется как соотношение сдвоенных и одиночных сигналов.

В случае СПВ и СА критический район соответственно на отцовской или материнской хромосоме 15 раньше реплицируется в S-фазе. При этом время репликации коррелирует с уровнем активности генов и зависит от конденсации хроматина в районах промоторов и примыкающих к нему районах.

Инактивация транскрипции сопровождается уплотнением хроматина (гетерохроматизацией), в результате чего ДНК становится менее доступной для РНК-полимеразы и факторов, необходимых для инициации транскрипции. Химическая природа модификаций гетерохроматина до сих пор не выяснена. Имеются данные о взаимосвязи процессов упаковки хроматина и метилирования ДНК. Например, показано, что транскрипционно активный хроматин имеет пониженное содержание линкерного гистона Н1, связывающего между собой нуклеосомы и упаковывающего их в фибриллы (см. главу 3). Этот гистоновый белок предпочтительно связывается с метилированными последовательностями ДНК.

 

Такое же сродство (аффинность) имеют негистоновые белки хроматина группы МеСР. При этом сила связывания определяется плотностью метилированных CG-динуклеотидов, а не конкретной нуклеотидной последовательностью. Некоторые из негистоновых белков хроматина подавляют транскрипцию непосредственно, например в белке МеСР2 для этого имеется специальный домен.

Таким образом, установка процессов метилирования ДНК про-

исходит только в импринтированных локусах на последующих этапах дифференцировки гамет. Основным ферментом, обеспечивающим метилирование de novo у млекопитающих, является ДНКметилтрансфераза, или Dnmt1 (см. главу 7). Вместе с тем, остается невыясненным механизм распознавания нуклеотидных последовательностей ДНК, которые должны быть по-разному метилированы в отцовском и материнском гаметогенезе. В этой связи были выделены два альтернативных способа сплайсинга 5'-экзонов гена Dnmt1, один из которых реализуется в оогенезе, другой - в сперматогенезе.

При прямом эпигеномном воздействии на экспрессию конкретного гена метилированию подвергается сам импринтированный ген. В этом процессе участвуют ДНК-связывающие белки, вызывающие гетерохроматизацию метилированного локуса. В результате доступ активаторов транскрипции к ДНК ограничивается, и экспрессия гена останавливается. При этом действие многочисленных факторов транскрипции зависит от характера метилирования ДНК. Среди этих факторов выделяют, с одной стороны, метилчувствительные активаторы и метилзависимые репрессоры (они опосредуют инактивацию метилированного гена), а с другой стороны - метилчувствительные репрессоры и метилзависимые активаторы (они обеспечивают экспрессию метилированного гена).

В случае косвенного влияния метилирования на экспрессию импринтированного гена предполагается модификация не самого гена, а другого гена - импринтора, находящегося на той же хромосоме в цис-положении. При этом функция гена-импринтора направлена на поддержание моноаллельной экспрессии одного или нескольких импринтированных локусов в пределах конкретного кластера генов.

 

Как оказалось, гены-импринторы часто (если не всегда) кодируют нетранслируемые РНК - это универсальный механизм конкурентной экспрессии, необходимый для поддержания в соматических клетках моноаллельной экспрессии всех импринтированных генов, включая гены, относящиеся к кластеру генов СПВ и СА.

Таким образом, общей особенностью импринтированных генов, находящихся в составе критических районов хромосом, является наличие генов, кодирующих нетранслируемую РНК. Например, для СПВ и СА обнаружено несколько таких генов (ZNF127AS, PAR5, PARSN, IPW, PAR1, C15orf2, PWCR1, UBE3A-AS). Некоторые из них синтезируются на антисмысловой цепи соответствующих генов (AS

означает «антисенс» - см. главу 20). В частности, на антисмысловой цепи белок-кодирующего гена ZNF127 транскрибируется в противоположном направлении нетранслируемая антисмысловая РНК, или ZNF127AS. Причем ген ZNF127 и его антисмысловой аналог ZNF127AS активны только на отцовской хромосоме.

Антисмысловая РНК также обнаружена для гена UBE3A, но его транскрипция (как и UBE3A-AS) происходит на разных родительских хромосомах. Так, UBE3A-AS экспрессируется на отцовской хромосоме и только в тех тканях мозга, в которых UBE3A подвержен импринтингу и активен только на материнской хромосоме. В остальных тканях, где UBE3A экспрессируется биаллельно, транскрипт UBE3A-AS не обнаруживается.

В целом можно заключить, что механизмы генного импринтинга остаются малоизученными.


Дата добавления: 2015-09-27 | Просмотры: 281 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)