АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

ВЕЩЕСТВА, АКТИВИРУЮЩИЕ ПЕРЕДАЧУ ВОЗБУЖДЕНИЯ

Прочитайте:
  1. А) Средства, блокирующие передачу возбуждения в вегетативных ганглиях (ганглиоблокаторы)
  2. Автоматия сердца, природа ритмического возбуждения сердца, структура и функции проводящей системы. Градиент автоматии. Нарушения ритма работы сердца (блокады, эксрасистолия).
  3. АДРЕНЕРГИЧЕСКИЕ СРЕДСТВА ИЛИ СРЕДСТВА, ВЛИЯЮЩИЕ НА ПЕРЕДАЧУ ВОЗБУЖДЕНИЯ В АДРЕНЕРГИЧЕСКИХ СИНАПСАХ (АДРЕНОМИМЕТИЧЕСКИЕ И АДРЕНОБЛОКИРУЮЩИЕ СРЕДСТВА)
  4. Б) Законы возбуждения «всё или ничего», «силы».
  5. Вещества, выделяемые эндотелиальными клетками и участвующие в гемостазе и регуляции кровотока
  6. Вещества, стимулирующие моторную функцию желудочно-кишечного тракта
  7. ВЗАИМООТНОШЕНИЯ ВОЗБУЖДЕНИЯ И ТОРМОЖЕНИЯ В КОРЕ БОЛЬШИХ ПОЛУШАРИЙ
  8. Возбудимость и возбудимые ткани. Характеристика процесса возбуждения.
  9. Возбуждение: определение понятия, виды возбуждения (местное и распространяющееся), их физиологическая характеристика.

Холиномиметики. Метахолин, карбахол и никотин оказывают на мышцу тот же эффект, что и ацетилхолин. Различие заключается в том, что эти вещества не разрушаются ацетилхолинэстеразой или разрушаются более медленно, в течение многих минут и даже часов.

Антихолинэстеразные соединения. Неостигмин, физостигмин и диизопропилфлуорофосфат инактивируют фермент таким образом, что имеющаяся в синапсе ацетилхолинэстераза теряет способность гидролизовать ацетилхолин, выделяющийся в концевой двигательной пластинке. В результате происходит накопление ацетилхолина, что в ряде случаев может вызывать мышечный спазм. Это может приводить к смертельным исходам при спазме гортани у курильщиков. Неостигмин и физостигмин инактивируют ацетилхолинэстеразу в течение нескольких часов, после чего их действие проходит, и синаптическая ацетилхолинэстераза восстанавливает свою активность. Диизопропилфлуорофосфат, являющийся нервно-паралитическим газом, блокирует ацетилхолинэстеразу на недели, что делает это вещество смертельно опасным.

ВЕЩЕСТВА, БЛОКИРУЮЩИЕ ПЕРЕДАЧУ ВОЗБУЖДЕНИЯ

Миорелаксанты периферического действия (кураре и курареподобные препараты) широко применяются в анестезиологии. Тубокурарин препятствует деполяризующему действию ацетилхолина. Дитилин приводит к миопаралитическому эффекту, вызывая стойкую деполяризацию постсинаптической мембраны.Ботулотоксин и столбнячный токсин блокируют секрецию медиатора из нервных терминалей.Бетта- и гамма-Бунгаротоксины блокируют холинорецепторы.

6. В зависимости от сократительных свойств, гистохимической окраски и утомляемости мышечные волокна подразделяют на две группы - красные и белые. Все мышечные волокна двигательной единицы принадлежат к одному типу.

Функциональной единицей мышечного волокна является миофибрилла. Миофибриллы занимают практически всю цитоплазму мышечного волокна, оттесняя ядра на периферию

Различают два типа мышечных волокон.

Красные мышечные волокна (волокна 1 типа) содержат большое количество митохондрий с высокой активностью окислительных ферментов. Сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма. Они участвуют в движениях, не требующих значительных усилий, - например, в поддержании позы.

Белым мышечным волокнам (волокнам 2 типа) присуща высокая активность ферментов гликолиза, значительная сила сокращения и такая высокая скорость потребления энергии, для которой уже не хватает аэробного метаболизма. Поэтому двигательные единицы, состоящие из белых волокон, обеспечивают быстрые, но кратковременные движения, требующие рывковых усилий.

Плавные произвольные движения начинаются с активации красных волокон. Если (как в норме) окончание мотонейрона выделяет достаточное количество ацетилхолина, а на постсинаптической мембране имеется необходимое количество холинорецепторов, происходит пороговая деполяризация постсинаптической мембраны и возникает потенциал действия. Последний распространяется по мембране мышечного волокна, затем по поперечным трубочкам переходит внутрь и запускает процессы электромеханического сопряжения, заканчивающиеся сокращением мышечного волокна.

Каждая миофибрилла имеет периодическое строение. Повторяющаяся структура в составе миофибриллы называется саркомером. Саркомеры соседних миофибрилл расположены друг против друга, отчего все мышечное волокно тоже приобретает периодическое строение.

Функции мышц регулируются различными отделами центральной нервной системы (ЦНС), которые во многом определяют характер их разносторонней активности (фазы движения, тонического напряжения и др.). Рецепторы двигательного аппарата дают начало афферентным волокнам двигательного анализатора, которые составляют 30-50% волокон смешанных (афферентно-эфферентных) нервов, направляющихся в спинной мозг. Сокращение мышц вызывает импульсы, которые являются источником мышечного чувства - кинестезии.

Передача возбуждения с нервного волокна на мышечное осуществляется через нервно-мышечный синапс,который состоит из двух разделенных щелью мембран - пресинаптической (нервного происхождения) и постсинаптической (мышечного происхождения). При воздействии нервного импульса выделяются кванты ацетилхолина, который приводит к возникновению электрического потенциала, способного возбудить мышечное волокно. Скорость проведения нервного импульса через синапс в тысячи раз меньше, чем в нервном волокне. Он проводит возбуждение только в направлении к мышце. В норме через нервно-мышечный синапс млекопитающих может пройти до 150 импульсов в одну секунду. При утомлении (или патологии) подвижность нервно-мышечных окончаний снижается, а характер импульсов может изменяться.

«Теория скользящих нитей» - концепция, объясняющая механизм сокращения миофибриллы. Разработана в 1954 г. независимо друг от друга Хью Эзмором Хаксли и Сэром Андру Филдингом Хаксли (Н. Е. Huxley, 1924-, английский молекулярный биолог, Sir А. F. Huxley, 1917-, английский физиолог, лауреат Нобелевской премии по физиологии и медицине 1963 г).
Согласно данной концепции, укорочение саркомера во время сокращения происходит благодаря активному скольжению актиновых нитей относительно миозиновых нитей. Укорочение заканчивается, когда актиновые нити втягиваются к центру саркомера. При расслаблении или растяжении мышцы область взаимного перекрывания тонких и толстых филаментов пассивно суживается. В настоящее время существуют модели механизма управления взаимодействием актиновых и миозиновых нитей, обеспечивающих сокращение миофибриллы, однако некоторые аспекты этих гипотез остаются пока недоказанными.

 

7. Решающую роль в мышечном сокращении играют ионы кальция. В мышечном волокне, кроме саркоплазматического ретикулума, имеются поперечные каналы, возникшие из углублений сарколеммы. Активность АТФ-азы регулируется изменением концентрации ионов кальция. В стадии покоя ионы кальция накапливаются в саркоплазматическом ретикулуме. При сокращении они перемещаются в волокна миозина, вызывая активацию АТФ-азы. В результате этого происходит сокращение; затем ионы кальция поступают в саркоплазматический ретикулум, чтобы начать новый цикл мышечного сокращения.
Итак, под влиянием ионов кальция укрепляются связи между субъединицами тропонина и одновременно ослабляется контакт тропонина с актином, поэтому последний может занять «открытое» положение. В свою очередь при снижении концентрации ионов кальция взаимодействие субъединиц тропонина ослабляется. Это позволяет субъединице Tnl вступить с актином в прочную связь, вызывая смещение тропомиозина и переход актина в «закрытое» положение, когда реагирова ние с головками миозина невозможно. Роль тропомиозина в этом процессе заключается в передаче блокирующего или деблокирующего эффекта тропонина одновременно семи молекулам актина.
В гладкой мышце, как и в скелетной, сократительный процесс активируется ионами кальция, однако источники этих ионов различны. Различие заключается в том, что саркоплазматический ретикулум, обеспечивающий практически все количество ионов кальция для сокращения скелетной мышцы, в большинстве гладких мышц очень слабо развит.
В гладкой мышце, как и в скелетной, сократительный процесс активируется ионами кальция, однако источники этих ионов различны. Различие заключается в том, что саркоплазматический ретикулум, обеспечивающий практически все количество ионов кальция для сокращения скелетной мышцы, в большинстве гладких мышц очень слабо развит.
Вместо этого почти все ионы кальция, вызывающие сокращение, входят в мышечную клетку из внеклеточной жидкости во время потенциала действия или под влиянием другого стимула.
Электромеханическое сопряжение - это последовательность процессов, в результате которых потенциал действия плазматической мембраны мышечного волокна приводит к запуску цикла поперечных мостиков.Электрическая активность плазматической мембраны не оказывает прямого влияния на сократительные белки, а вызывает повышение цитоплазматической концентрации ионов Са2+.

8 Единственным непосредственным источником энергии для мышечного сокращения служит АТФ.
Запасов АТФ в мышцах очень мало — хватает на поддержание их работы в течение долей секунды. Поэтому для обеспечения длительной деятельности мышц необходимо постоянное восстановление АТФ. Этот процесс осуществляется в мышцах анаэробным (без участия кислорода) и аэробным (с участием кислорода) путями. В организме человека могут использоваться три основных источника «топлива»: креатин-фосфат (КрФ), углеводы в виде гликогена и глюкозы и жиры.
Энергетических систем получения АТФ в работающей мышце тоже три: фосфогенная, гликоли-тическая и окислительная.
Восстановление АТФ во время мышечного сокращения происходит почти мгновенно за счет КрФ. При этом работает фосфогенная система, которая способна осуществить восстановление АТФ со скоростью, необходимой для выполнения работы, которая характеризуется максимальной мощностью
Обеспечения мышц энергией при более продолжительной физической нагрузке поддерживается за счет гликолитической системы. В основе ее деятельности лежит процесс анаэробного расщепления углеводов (гликогена и глюкозы) до молочной кислоты.
При увеличении продолжительности работы энергообеспечение мышц в основном осуществляется за счет окислительной системы и процесса, называемого окислительным фосфорилированием. Это аэробный процесс, то есть он осуществляется при достаточном снабжении мышц кислородом. В качестве энергетических субстратов используются углеводы.
Удаление ионов Са2+ от сократительных белков приводит к началу расслабления. При расслаблении концентрация кальция в саркоплазме снижается от 10-5 до 10-7моль*л-1. Это приводит к потере активности АТФ-азы миозина. Головки миозиновых нитей связывают АТФ, но не расщепляют их. Тропонин при отсутствии кальция снова блокирует активные центры тонких нитей. Все это приводит к разрыву актомиозиновых комплексов и расхождению актиновых и миозиновых нитей. Под действием упругих сил белков стромы мышца возвращается в исходное состояние.
Таким образом, в процессе сокращения и расслабления мышц АТФ выполняет следующую роль:
- в покоящейся мышце – препятствует соединению актиновых нитей с миозиновыми;
- в процесс сокращения мышцы – поставляет необходимую энергию для движения тонких нитей относительно толстых, что приводит к укорочению мышцы или развитию напряжения;
Процесс мышечного расслабления
В настоящее время расслабление считается активным процессом, причем расход энергии больше, чем при сокращении. Источник сокращения - АТФ, расщепляющийся при сокращении.
Трупным окоченением принято называть состояние мышц трупа при котором они уплотняются и фиксируют части трупа в определенном положении. Окоченевшее мертвое тело как бы деревенеет.
Непосредственно после наступления смерти все мышцы тела человека расслабляются, теряют свойственную им прижизненную упругость, лицо принимает спокойный вид, отсюда, наверное, происходит слово покойник. После прекращения основных процессов жизнедеятельности во всех мышцах тела начинаются сложные биохимические процессы, связанные с преобразованием аденазинтрифосфорной кислоты (АТФ) и высокомолекулярных структур актина и миозина.

 

9 Механический ответ отдельного мышечного волокна на одиночный потенциал действия называется одиночным сокращением.
Последовательность явлений во время изотонического одиночного сокращения. При возбуждении мышечного волокна поперечные мостики начинают развивать силу, однако укорочение не начнется, пока мышечное напряжение не превысит нагрузку на волокно. Таким образом, укорочению предшествует период изометрического сокращения, в течение которого возрастает напряжение.

Суммация силы. Суммация означает сложение отдельных одиночных сокращений, ведущее к увеличению интенсивности общего сокращения мышцы. Суммация осуществляется двумя путями: (1) путем увеличения числа моторных единиц, сокращающихся одновременно, что называют суммацией сокращений многих волокон; (2) путем увеличения частоты сокращений, что называют временной (частотной) суммацией, которая может привести к тетанизации.
Тетанус, тетаническое мышечное сокращение— состояние длительного сокращения, непрерывного напряжения мышцы, возникающее при поступлении к ней через мотонейрон нервных импульсов с высокой частотой. При этом расслабления между последовательными одиночными сокращениями не происходит и возникает их суммация, приводящая к стойкому максимальному сокращению мышцы.
Различают зубчатый и гладкий тетанус. При зубчатом тетанусе каждый последующий нервный импульс воздействует на начавшую расслабляться мышцу, при этом происходит неполная суммация сокращений. При гладком тетанусе, имеющем бо́льшую амплитуду, воздействие импульса происходит в конце периода укорочения, что приводит к полной суммации сокращений.
Пессимальное торможение
Деполяризация постсинаптической мембраны при очень частом следовании друг за другом нервных импульсов лежит в основе открытого Н. Е. Введенским пессимального торможения. Это явление часто называют торможением Введенского. Сущность его состоит в следующем. Величина тетанического сокращения скелетной мышцы в ответ на ритмические раздражения нерва возрастает с увеличением частоты стимуляции. При некоторой оптимальной частоте раздражения тетанус достигает наибольшей величины. Если продолжать увеличивать частоту стимуляции нерва, то тетаническое сокращение мышцы начинает резко ослабевать и при некоторой большой пессимальной частоте раздражения нерва мышца, несмотря на продолжающееся раздражение, почти пол ностью расслабляется. Уменьшение частоты стимуляции тотчас приводит к восстановле нию высокого уровня тетанического сокращения.


Дата добавления: 2015-12-15 | Просмотры: 683 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)