АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Влияние статистических и динамических упражнений на оббьем сердца

Прочитайте:
  1. D. снижением чувствительности инсулинзависимых клеток к инсулину под влиянием глюкокортикоидов
  2. I. Средства, уменьшающие стимулирующее влияние адренергической иннервации на сердечно-сосудистую систему (нейротропные средства)
  3. А. Поражения сердца.
  4. А. Поражения сердца.
  5. А. Поражения сердца.
  6. А. Поражения сердца.
  7. А. Поражения сердца.
  8. А. Поражения сердца.
  9. А. Поражения сердца.
  10. А. Поражения сердца.

Нагрузки разделяют принципиально, в зависимости от процессов, происходящих в мышце. В физиологии принято выделять два типа мышечных сокращений — статические и динамические.

 

Согласно современным данным, выраженность гипертрофии и дилатации зависит от вида физической нагрузки — изотоническая (или динамическая) и изометрическая (или статическая). Они вызывают различные физиологические реакции и предъявляют к сердцу разные требования.

 

Динамические нагрузки вызывают постоянное сокращение и увеличение длины мышцы. В свою очередь, это вызывает периодическое давление на стенки кровеносных сосудов, из-за чего кровоток в мышцах усиливается. Гемодинамической реакцией на динамическую физическую нагрузку является падение системного сосудистого сопротивления, что отражает вазодилатацию резистивных сосудов в работающих мышцах. Эта реакция выражена даже при физической нагрузке небольшой интенсивности. Отмечается снижение постнагрузки и перераспределение сердечного выброса таким образом, что во время максимального усилия более 80% сердечного выброса может приходиться на работающие мышцы (по сравнению с приблизительно 20% в покое). Способность к аэробному метаболизму у скелетных мышц значительно выше, чем у тканей внутренних органов и почек (поскольку под влиянием местных факторов способность скелетных мышц утилизировать кислород значительно возрастает), поэтому конечным результатом такого перераспределения кровотока становится увеличение системного потребления кислорода. Первичной реакцией сердца на динамическую физическую нагрузку является повышение частоты сердечных сокращений. Однако не только изменение частоты сердечного ритма лежит в основе увеличения сердечного выброса при нагрузке. Отмечается увеличение венозного возврата, обусловленное, вероятно, констрикцией крупных вен и механическим эффектом мышечного сокращения, что приводит к увеличению конечно-диастолического и ударного объема (механизм Франка—Старлинга). Происходит также нейрогуморальная симпатическая активация, которая вызывает повышение сократимости сердца.

 

Таким образом в настоящее время считается, что некоторое расширение полостей сердца (тоногенная дилатация) является основным механизмом адаптации при систематических нагрузках динамического характера. Гипертрофия у таких людей оказывается минимально выражена или не выражена совсем.

 

При изометрической нагрузке происходит минимальное изменение длины мышцы, в то же время возрастает ее тонус. Так как при этом мышцы напряжены более продолжительный промежуток времени по сравнению с динамическими упражнениями, имеет место сдавливание сосудов (артерий) мышц, повышается их сопротивление. При этом задействованы лишь отдельные группы мышц, и внешняя работа не производится. Потребность в кислороде при выполнении такой физической нагрузки пропорциональна массе участвующих мышц и обычно умеренная. Однако эти потребности не могут быть удовлетворены за счет увеличения кровотока, так как местная вазодилатация ограничивается механическим сдавлением резистивных сосудов изометрически сокращающейся мышцей, и потому кровоток в работающей мышце фактически может уменьшаться. Перфузия мышцы поддерживается за счет подъема артериального давления, который опосредуется рефлекторной дугой, имеющей начало в сокращающейся мышце, что приводит к увеличению системного сосудистого сопротивления даже при умеренной нагрузке. Параллельно с этим может происходить падение ударного объема и развитие чрезмерной реакции со стороны сердечного ритма на изометрическую нагрузку. Таким образом, в противоположность изотонической нагрузке изометрическая нагрузка предъявляет повышенные требования к систолической функции сердца в виде значительного увеличения нагрузки давлением.

 

Данные литературы свидетельствуют о том, что при занятиях спортом “на выносливость” в первую очередь развивается тоногенная дилатация полости левого желудочка. Кроме того, увеличиваются ударный объем (УО) и фракция выброса (ФВ) преимущественно левого желудочка.

 

Спортсмены, занятые в скоростно-силовых видах спорта (метание диска, поднятие штанги), обладают значительно гипертрофированным “спортивным” сердцем. Для данной группы спортсменов характерна концентрическая гипертрофия — она выявляется у 35% тяжелоатлетов.

 

Физиологическая дилатация “спортивного” сердца ограничивается определенными пределами. Для решения вопроса о допустимой величине сердца у того или иного спортсмена следует сопоставить этот параметр с величиной максимального потребления кислорода или с величиной максимального О2-пульса. Если в процессе тренировки отмечается рост размеров сердца, который сопровождается ростом максимального потребления кислорода, — дилатация носит адаптивный, физиологический характер. Если же показатели транспорта кислорода не растут или даже начали снижаться, дилатацию сердца следует считать чрезмерной.

 

Наличие расширения полостей при статических нагрузках — явление патологическое, говорящее о перенапряжении миокарда. В таких случаях рекомендуется прекратить занятия спортом и пройти медицинское обследование. Развитие гипертрофии обусловлено постоянным повышением внутрисердечного давления, в результате чего активируется синтез сократительного белка. Это приводит к увеличению массы сердца, в дальнейшем гипертрофия начинает преобладать в качестве единственного механизма приспособления к нагрузкам и создавать ряд неблагоприятных моментов. При резко выраженной гипертрофии миокарда утрачивается способность к полному расслаблению, поэтому увеличивается объем предсердий — это создает условия для возникновения аритмии. Сама по себе гипертрофия миокарда тоже является фактором, способствующим возникновению аритмий (в том числе смертельных).

 

Морфология "спортивного” сердца

 

Гипертрофический процесс в миокарде, развивающийся в связи с физической нагрузкой, происходит за счет увеличения числа саркомеров, числа и размеров митохондрий, рибосом и других структур сократительных элементов сердечной мышцы. Ядерно-цитоплазматические соотношения при этом не нарушаются, что указывает на стабильность структурного гомеостаза на клеточном уровне.

 

На процесс формирования гипертрофии и дилатации влияют ряд факторов, в частности — вид вегетативной регуляции. При сбалансированном влиянии симпатических и парасимпатических отделов вегетативной нервной системы на работу сердца наблюдается равномерная гипертрофия и дилатация с преобладанием изменений в левом желудочке. Доминирование вагусно-холинергических влияний выявило большую степень расширения камер сердца по сравнению с увеличением их массы. Усиление симпатических влияний сопровождалось преобладающим увеличением массы частей сердца в отличие от их пространственных характеристик.

 

Начальные структурные изменения миокарда детей школьного возраста при скоростно-силовых нагрузках и длительной работе на выносливость характеризуются главным образом морфофункциональным напряжением сердечной мышцы и следующими за ним дилатацией и гипертрофией левого желудочка или и тем, и другим. Изначально дилатация и гипертрофия левого желудочка рассматриваются как компенсаторно-приспособительная реакция, направленная на поддержание системной гемодинамики. На ранних этапах развития структурных изменений в миокарде преобладают гемодинамические воздействия и факторы нейрогуморальной регуляции, такие как увеличение венозного притока крови к миокарду и повышенная активность адренергических влияний на миокард.

 

Более существенные структурно-функциональные изменения сердца, характерные для конкретного вида спорта, регистрируются с 14-15 лет и заканчивают свое формирование к 19 годам жизни.

 

У спортсменов с 16-летнего возраста регистрируется уже сформировавшееся “спортивное” сердце, характерное для своей спортивной специализации.

 

В последующих периодах структурно-функциональные изменения миокарда зависят в основном от структурных изменений сосудистой стенки. Огромную роль играют активность ренина в плазме крови, наличие в самом сердце ренин-ангиотензиновой системы, которая влияет на функцию миокарда, где кардиальный ангиотензин может стимулировать сократимость миокарда и участвовать в развитии гипертрофии левого желудочка.

 

Объем сердца увеличивается при длительной тренировке на пульсе, соответствующем максимальному ударному объему. Этот показатель индивидуален. Обычно ударный объем начинает резко возрастать при пульсе 100, к 120 сильно увеличивается, у некоторых растет до пульса 150. Длительная тренировка при максимальном ударном объеме — это, условно говоря, упражнения на “гибкость” для сердца.

 

Развитие гипертрофии стимулирует большие силовые нагрузки, при которых частота пульса во время тренировки достигает 190—200 ударов в минуту. Но при таких чрезвычайных нагрузках наряду с гипертрофией возможно присоединение дистрофических процессов в миокарде.

 

Правильная схема интервальной тренировки такова: 60 секунд разгон пульса и 30 секунд — поддержание пульса на уровне 180 ударов в минуту. Это классическая немецкая интервальная тренировка. При этом еще в 1970-е годы было показано, что происходит гипертрофия миокардиоцитов. Однако этот путь следует использовать крайне осторожно, особенно у детей. Детский организм обладает рядом возрастных особенностей, которые следует учитывать в тренировочном процессе. Развитие суставно-связочного аппарата, скелетных мышц в возрасте 13—15 лет опережает рост и дифференцировку мышцы сердца. Если к 14-15 годам скелетные мышцы по своим свойствам мало отличаются от мышц взрослых людей, то сердечная мышца продолжает развиваться до 18—20 лет. Чрезмерные нагрузки на мышцу сердца в пубертатном периоде неминуемо приводят к развитию дистрофии миокарда.

 

В литературе есть данные (Агаджанян, 2000), что степень гипертрофии левого желудочка не находится в определенной зависимости от возраста, стажа и квалификации спортсменов, а связана с особенностями тренировочного процесса. Кроме того, как было выявлено в течение последних нескольких десятилетий, при одном и том же уровне и типе тренировок у некоторых спортсменов морфологические изменения миокарда более выражены. В связи с этим рассматривается вклад генетического компонента в характер и степень этих изменений.

 

Значение дискуссии по поводу влияния генетических особенностей на сердце атлета очевидно для спорта. Если “спортивное” сердце — это преимущественно генетически обусловленные изменения, то потенциально возможен ранний отбор спортсменов, кандидатов для спортивных побед.

 

Несмотря на то, что “спортивное” сердце изучается уже более ста лет, включая несколько десятилетий использования ЭКГ, еще остается множество нерешенных вопросов, касающихся его формирования. Изменения в сердце спортсмена, безусловно, связаны с физическими нагрузками, однако при одном и том же уровне и типе тренировок у некоторых спортсменов морфологические изменения миокарда более выражены. В связи с этим нельзя исключить вклад генетического компонента в характер и степень этих изменений А.В. Соболева и соавт. (2000) выявили значительное влияние генотипа белков ренинангиотензинового каскада на структурно-функциональное состояние миокарда у спортсменов.

 

Сегодня четко установлено, что гипертрофия сердца у спортсменов обусловлена большим количеством факторов роста, эндокринными и нейрогуморальными влияниями, такими как инсулин, катехоламины, предсердный натрийуретический пептид, эндотелин, а также активностью ренин-ангиотензин-альдостероновой системы. Основные физиологические эффекты ангиотензина (AT) II связаны с контролем артериального давления (АД), участием в регуляции мышечного тонуса сосудов, продукции альдостерона, высвобождения катехоламинов, а также и в ростовых процессах. Увеличение AT II может приводить к развитию гипертрофии миокарда (Ishanov et al., 1997). Эффекты же AT II, как вазоконстрикторный, так и пролиферативный, опосредуются через взаимодействие с рецепторами AT II первого типа.

 

Увеличение массы миокарда левого желудочка (ММЛЖ) имеет генетическую предрасположенность и у здоровых лиц, что может объяснить причину того, что не у всех спортсменов в процессе тренировок появляется гипертрофия левого желудочка. Существуют данные о роли уровня АПФ и предсердного натрийуретического пептида в развитии миокардиальной гипертрофии в группе здоровых лиц, имеющих физические нагрузки. Генетические особенности оказывают большее влияние на толщину стенок левого желудочка и в меньшей степени на его диаметр.

 

Однако окончательно утверждать о генетической предрасположенности к формированию “спортивного” сердца нельзя, поскольку существуют исследования, в которых не выявлена связь между полиморфизмом АПФ генотипа и ММЛЖ у спортсменов. По данным (Kupari, 1994), у здоровых людей, не занимавшихся спортом, ММЛЖ не зависела от варианта генотипа АПФ. По мнению некоторых авторов, генетические факторы не столь важны и для объяснения изменений в сердце атлета, в частности, гипертрофии эксцентрического типа. Предполагается, что они практически не играют роли при формировании различий внутреннего диаметра полости левого желудочка при тренировках на выносливость.

 

Следует остановиться на некоторых общих вопросах и современной оценке тех признаков физиологического “спортивного” сердца, которые считают сегодня характерными для высокого уровня функционального состояния сердечно-сосудистой системы спортсмена. К ним относится триада: брадикардия, артериальная гипотензия и гипертрофия миокарда.

 

Наличие этих трех признаков свидетельствует о высоком уровне функционального состояния сердечно-сосудистой системы, но сочетание их совсем не обязательно. Высокое функциональное состояние может не сопровождаться всеми этими признаками. Кроме того, каждый из этих признаков может быть и проявлением патологических изменений в организме.

 

Наиболее постоянным или обязательным признаком высокого функционального состояния сердца спортсмена является брадикардия в покое. У спортсменов частота сердечных сокращений (ЧСС) меньше, чем у лиц, не занимающихся спортом. Резко выраженная брадикардия (ниже 40 уд/мин), которая вызывает сомнения в отношении ее физиологического происхождения, ветре-чается чаше у мастеров спорта н спортсменов 1 разряда, причем среди мужчин чаше, чем среди женщин. Брадикардия встречается чаше у спортсменов, тренирующих качество выносливости.

 

Брадикардию у спортсменов следует расценивать как проявление экономизации деятельности сердца. Уменьшение частоты сердечных сокращений снижает потребность миокарда в кислороде, вследствие уменьшения величины его работы, а также увеличивает диастату Возникает она в результате изменений уровней нейровегетативной регуляции в покое, когда наряду с повышением тонуса парасимпатической нервной системы снижается активность симпатико-адреналовой системы.

 

Между степенью брадикардии и состоянием тренированности спортсмена потного параллелизма нет. Примерно у трети спортсменов с брадикардией отмечается плохая приспособляемость к нагрузке, сниженная работоспособность. быстрая утомляемость, расстройства сна. аппетита и различные другие жалобы. Обследование таких спортсменов позволяет в одних случаях выявить переутомление, которое и является причиной брадикардии, а в других — очаги хронической инфекций (ОХИ), и тогда брадикардию следует расценивать как следствие инфекционно-токсических влияний. Поэтому спортсменам с частотой сокращения сердца ниже 40 уд/мин. обязательно требуется врачебное обследование. Таким образом, брадикардия только тогда может считаться признаком высокого функционального состояния организма, когда она не сопровождается жалобами и отклонениями в состоянии здоровья.

 

Артериальное давление (АД) у спортсменов — важный интегральный показатель функционального состояния сердечно-сосудистой системы. Эта информация имеет значение как для диагностики состояния тренированности, так и (в ряде случаев) для диагностики предпатологических и патологических состояний.

 

Нормальный диапазон колебания для максимального давления у спортсменов составляет 100—129 мм рт. ст., для минимального — 60—79 мм рт. ст.

 

Со стороны сердечной гемодинамики у спортсменов, специализирующихся в видах спорта на выносливость, отмечается описанное в литературе изменение в виде умеренной гипотонии и брадикардии покоя. У атлетов, развивающих скоростно-силовые качества, регистрируется повышенное среднее и систолическое артериальное давление (артериальная гипертензия первой-второй степени).

 

Однако в некоторых случаях повышение АД связывают с неправильно организованным индивидуальным тренировочным процессом: в результате переутомления или перенапряжения АД может повыситься. Определенную роль в повышении АД играют психические перенапряжения. Все сказанное касается условий покоя, поскольку при физической нагрузке повышение АД физиологически детерминировано.

 

Общепринято мнение, что понижение АД (артериальная гипотония) у спортсменов является проявлением высокой тренированности. В происхождении гипотонии ведущую роль играет преобладание парасимпатической нервной системы в регуляции АД, а также и некоторые другие факторы, в частности влияние натрийуретического гормона. Было выявлено, что в результате гипертрофии левого предсердия активизируется синтетическая и секреторная функция кардиомиоцитов. Особенно проявляется увеличение секреторной функции, что подтверждается повышением относительного объема секреторных гранул, которые принимают участие в синтезе натрийуретического гормона. Действие последнего на организм проявляется в уменьшении артериального давления. Существует даже понятие “спортивной гипотензии”, характерной для лиц, занимающихся спортом. Так, у 63% спортсменов АД находится на нижних границах нормы, причем у 17% — в пределах 100—109 мм рт. ст. Что же касается 10—19% спортсменов с выраженной гипотензией (ниже 100/60 мм рт. ст.), то клинический анализ показал, что среди этих спортсменов встречаются все формы гипотензии, как физиологической, так и патологической.

 

Все это позволяет утверждать, что при выявлении у спортсмена гипотензии, прежде чем считать ее физиологической, необходимо исключить все возможные ее патологические формы. Специальные исследования показали, что у спортсменов все же существует своеобразная форма физической гипотензии преходящего характера. Она появляется только в период достижения пика спортивной формы, т.е. наивысшего уровня тренированности, является следствием высокого уровня функционального состояния и исчезает с выходом спортсмена из пика спортивной формы. Такая гипотензия получила название “гипотензии высокой тренированности”.


Дата добавления: 2015-08-14 | Просмотры: 1730 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.008 сек.)