АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Получение. Схематическое изображение рентгеновской трубки

Прочитайте:
  1. XIV. ИНФОРМИРОВАНИЕ БОЛЬНОГО О ПРЕДСТОЯЩЕЙ ОПЕРАЦИИ И ПОЛУЧЕНИЕ СОГЛАСИЯ НА ОПЕРАТИВНОЕ ЛЕЧЕНИЕ.
  2. Анатоксины, их получение, титрование и практическое применение.
  3. Анатоксины. Получение, очистка, титрование, применение.
  4. Антитоксические сыворотки. Получение, очистка, титрование, применение. Осложнения при использовании и их предупреждение.
  5. Живые вакцины, получение, применение. Достоинства и недостатки.
  6. Живые вакцины. Получение, применение: достоинства и недостатки.
  7. Контроль за получением, хранением и отпуском МИБП в аптечных организациях
  8. Насколько эффективнее окраска экссудата по Граму по сравнению с получением культуры гонококка на селективных средах при наличии симптомов гонококкового уретрита?
  9. Получение
  10. Получение

Схематическое изображение рентгеновской трубки. X — рентгеновские лучи, K — катод, А — анод (иногда называемый антикатодом), С — теплоотвод, Uh — напряжение накала катода, Ua — ускоряющее напряжение, Win — впуск водяного охлаждения, Wout — выпуск водяного охлаждения.

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. При этом испускаются рентгеновские лучи, то есть тормозное излучение, и в то же время выбиваются электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли: где Z — атомный номер элемента анода, A и B — константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, — из молибдена.

В процессе ускорения-торможения лишь около 1% кинетической энергии электрона идёт на рентгеновское излучение, 99 % энергии превращается в тепло.

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Так называемое синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Длины волн спектральных линий K-серий (нм) для ряда анодных материалов.[1],[2]
  Kα₁ Kα₂ Kβ₁ Kβ₂
Fe 0,193735 0,193604 0,193998 0,17566 0,17442
Cu 0,154184 0,154056 0,154439 0,139222 0,138109
Ag 0,0560834 0,0559363 0,0563775    
Cr 0,2291 0,22897 0,229361    
Co 0,179026 0,178897 0,179285    
Mo 0,071073 0,07093 0,071359    
W 0,0210599 0,0208992 0,0213813    
Zr   0,078593 0,079015 0,070173 0,068993
Ni   0,165791 0,166175 0,15001 0,14886

Дата добавления: 2015-09-03 | Просмотры: 526 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)