АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Принцип работы и устройство микроскопа
С точки зрения современной физики световой микроскоп представляет собой достаточно сложный прибор - частично когерентный оптический процессор, для описания работы которого используется диффракционная теория света. Оптика микроскопа практически мгновенно выполняет преобразования световых волн, проходящих через полупрозрачную клетку, в результате чего формируется ее изображение, доступное для наблюдения глазом человека.
Самые простые световые волны генерируются лазерами. Эти волны отличаются когерентностью (все волны идут как одна, без смещения) и монохроматичностью (все волны одной длины, поэтому имеют один цвет). Когерентная и монохроматичная световая волна описывается уравнением:
,
где A - амплитуда волны, T - ее период, t - время, x - расстояние, v - скорость света в данной среде.
Если вместо периода волны T ввести пространственную частоту u = 1/T и принять, что A = 1, t = 0, а скорость волны не меняется (среда однородная), то мы получим более простую форму уравнения световой волны:
Следует отметить, что второе уравнение носит более абстрактный характер, в частности, в нем введена безразмерная пространственная частота u вместо частоты колебаний электромагнитной волны, выражаемой в Гц.
Встретившись с круглым отверстием небольшого диаметра f(x), такая световая волна будет огибать его края и создавать диффракционную картину F(u), состоящую из центрального максимума нулевого порядка, который окружен концентрическими максимумами первого, второго и последующих порядков с убыванием интенсивности (рис. 1):
Дата добавления: 2015-09-03 | Просмотры: 424 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 |
|