Регуляция деятельности сердца
Сердце - это мощный насос, перекачивающий по кровеносным сосудам около 10 т крови в сутки. Организм испытывает на себе за свою жизнь все невзгоды окружающей среды, и чтобы помочь ему адаптироваться к новым условиям, сердце также должно перестроить свою работу. Это достигается за счет деятельности ряда регуляторных механизмов. Условно их можно разделить на 2 группы: 1) внутрисердечные и 2) внесердечные, или экстракардиальные.
Внутрисердечные механизмы регуляции Эти механизмы делятся на 3 группы: 1) внутриклеточные, 2) гемодинамические (гетеро- и гомеометрические), 3) внутрисердечные периферические рефлексы.
Внутриклеточные механизмы регуляции имеют место, например, у спортсменов. Регулярная мышечная нагрузка приводит к усилению синтеза сократительных белков миокарда и появлению так называемой рабочей (физиологической) гипертрофии - утолщению стенок сердца и увеличению его размеров. Так, если масса нетренированного сердца составляет 300 г, то у спортсменов она увеличивается до 500 г.
Гемодинамические, или миогепные, механизмы регуляции обеспечивают постоянство систолического объема крови. Сила сокращений сердца зависит от его кровенаполнения, т.е. от исходной длины мышечных волокон и степени их растяжения во время диастолы. Чем больше растянуты волокна, тем больше приток крови к сердцу, что приводит к увеличению силы сердечных сокращений во время систолы - это «закон сердца» (закон Франка- Старлинга). Такой тип гемодинамической регуляции называется гетерометрическим.
Она объясняется способностью Са2+ выходить из саркоплазматического ретикулума. Чем больше растянут саркомер, тем больше выделяется Са2+ и тем больше сила сокращений сердца. Этот механизм саморегуляции включается при перемене положения тела, при резком увеличении объема циркулирующей крови (при переливании), а также при фармакологической блокаде симпатической нервной системы бета-симпатолитиками.
Другой тип миогенной саморегуляции работы сердца - гомеометрический не зависит от исходной длины кардиомиоцитов. Сила сердечных сокращений может возрастать при увеличении частоты сокращений сердца. Чем чаще оно сокращается, тем выше амплитуда его сокращений («лестница» Боудича). При повышении давления в аорте до определенных пределов возрастает противонагрузка на сердце, происходит увеличение силы сердечных сокращений (феномен Анрепа).
Внутрисердечные периферические рефлексы относятся к третьей группе механизмов регуляции. В сердце независимо от нервных элементов экстракардиального происхождения функционирует внутриорганная нервная система, образующая миниатюрные рефлекторные дуги, в состав которых входят афферентные нейроны, дендриты которых начинаются на рецепторах растяжения на волокнах миокарда и коронарных сосудов, вставочные и эфферентные нейроны (клетки Догеля I, II и III порядка), аксоны которых могут заканчиваться на миокардиоцитах, расположенных в другом отделе сердца. Так, увеличение притока крови к правому предсердию и растяжение его стенок приводит к усилению сокращения левого желудочка. Этот рефлекс можно заблокировать с помощью, например, местных анестетиков (новокаина) и ганглиоблокаторов (беизогексония).
Эфферентный нейрон внутрисердечной рефлекторной дуги может быть общим с эфферентным нейроном парасимпатического нерва (п. vagus), который иннервирует сердечную мышцу.
Внесердечные (эстракардиальные) механизмы регуляции
Эти механизмы также работают по рефлекторному принципу, в них главную роль играют парасимпатическая нервная система (п. vagus) и симпатическая нервная система (п. sympaticus).
Рефлекторная дуга экстракардиального рефлекса начинается от механорецепторов предсердий - А-рецепторов, реагирующих на сокращение мускулатуры предсердий и их напряжение, и В-рецепторов, возбуждающихся в конце систолы желудочков и реагирующих на пассивное растяжение мускулатуры предсердий (увеличение внутрисердечного давления). От этих рецепторов начинаются афферентные пути, которые представлены миелинизи-рованными волокнами, идущими в составе блуждающего нерва.
Другая группа афферентных нервных волокон отходит от свободных нервных окончаний густого субэндокардиального сплетения безмякотных волокон, находящихся под эндокардом. Они идут в составе симпатических нервов. Афферентные волокна, идущие в составе блуждающего нерва, достигают продолговатого мозга, где находится центр блуждающего нерва. Его называют ингибирующим сердечным центром, в нем расположены первые, или преганглионарные, нейроны, регулирующие работу сердца. Аксоны этих нейронов, составляющих блуждающий нерв, достигают сердца, в их окончаниях выделяется ацетилхолип, который через Н-холинорецепторы передает возбуждение на интрамуральный нейрон, или ганглий. В нем находится второй нейрон - постганглионарный, аксон которого иннервирует проводящую систему сердца и коронарные сосуды, контактируя с М - холинорецепторами.
Волокна правого блуждающего нерва иннервируют синоатриальный узел, левого - атриовентрикулярный. Блуждающий нерв не иннервирует желудочки.
Симпатические нервы равномерно иннервируют все отделы сердца, включая желудочки. Первые нейроны находятся в боковых рогах грудных сегментов спинного мозга (Т, - Т5). Их преганглионарные волокна прерываются в шейных и верхних грудных симпатических узлах и звездчатом ганглии, где находятся вторые нейроны, от которых отходят постганглионарные волокна, выделяющие в своих окончаниях адреналин и норадреналин. Контактируя с бета-адренорецепторами, они передают свои влияния на сердечную мышцу.
Характер влияний блуждающих и симпатических нервов на работу сердца Различают четыре типа влияний блуждающего и симпатического нервов на работу сердца: 1) инотропное - на силу сердечных сокращений (инос-сила); 2) хронотропное - на частоту сердечных сокращений (хронос-время); 3) батмотропное - на возбудимость сердечной мышцы; 4) дромотропное - на проводимость импульсов по сердечной мышце.
Впервые тормозное влияние блуждающих нервов на работу сердца было показано братьями Вебер в 1845 г. Раздражение периферического конца перерезанного блуждающего нерва приводит к уменьшению амплитуды сердечных сокращений, т.е. к отрицательному инотропному эффекту, урежению сердечных сокращений - отрицательному хронотропному, уменьшению возбудимости и проводимости - отрицательному батмотропному и дромотропному эффектам. Сильное раздражение блуждающего нерва вызывает остановку сердца в диастоле. Механизм отрицательного влияния блуждающего нерва на частоту сердечных сокращений можно представить в виде цепочки следующих друг за другом процессов: стимуляция блуждающего нерва → выделение в его окончаниях ацетилхолина → взаимодействие с М-холинорецепторами → увеличение проницаемости мембраны клеток пейсмекера для ионов К+ и уменьшение для Са2+ → замедление МДД → увеличение мембранного потенциала → отрицательный хронотропный эффект. При сильном раздражении блуждающего нерва может возникнуть гиперполяризация клеток синоатриального узла и полная остановка сердца.
При продолжающемся раздражении блуждающего нерва прекратившиеся сокращения могут вновь восстановиться - это феномен ускользания сердца из-под влияния блуждающего нерва. Отрицательное влияние блуждающего нерва на сердце может быть снято с помощью атропина - блокатора М-холинорецепторов. Кроме того, ацетилхолин очень быстро разрушается ферментом ацетилхолинэстеразой (АХЭ), поэтому эффект нерва кратковременный.
Существует такое понятие, как тонус вагуса - это постоянное тормозное влияние блуждающего нерва на сердце, особенно в состоянии покоя, т.е. в ночное время («ночь - царство вагуса»). Наличие тонуса блуждающего нерва доказывается полной денервацией сердца, после чего оно будет работать чаще, чем до денервации.
Впервые влияние симпатического нерва на сердце было описано братьями Цион (1867 г.), Раздражение периферического конца перерезанного симпатического нерва оказывает на сердце положительный ино-, хроно-, батмо-, дромотропный эффект. При этом цепь процессов такова: стимуляция симпатического нерва → выделение в его окончаниях норадреналина → взаимодействие с бета-адренорецепторами на мембране клеток синоатриального узла → повышение проницаемости для Na+ и Са2+ → уменьшение МП → ускорение МДД → положительный хронотропный эффект. Положительное влияние симпатической нервной системы на сердце можно уменьшить или устранить с помощью бета-блокаторов, например обзидана. Свое влияние симпатические нервы, в отличие от блуждающего, оказывают не в покое, а при физическом или эмоциональном напряжении, в экстремальной ситуации. При чрезмерной активности симпатической нервной системы могут появиться эктопические очаги возбуждения в сердце, что приведет к возникновению экстрасистол.
И.П.Павлов (1887 г.) обнаружил в составе симпатического нерва волокна, раздражение которых увеличивало силу сердечных сокращений, не изменяя при этом их частоту. Эти волокна были названы усиливающим, или трофическим, нервом, так как стимулировали обменные процессы и питание сердечной мышцы.
В настоящее время стало известно, что при раздражении нервов, иннервирующих сердце, в синаптическую щель, помимо основных медиаторов, выделяются и другие биологически активные вещества, в частности пептиды. Они обладают модулирующим действием в отношении основного медиатора. Так, опиоидные пептиды (энкефалины и эндорфины) угнетают эффекты раздражения блуждающего нерва, а пептид дельта-сна усиливает вагусную брадикардию.
Дата добавления: 2015-09-18 | Просмотры: 639 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|