АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Методики изучения функциональной организации мозга

Прочитайте:
  1. A) Нарушение конструктивной деятельности у больных с поражением лобных долей мозга
  2. B) Нарушение анализа смысловых структур у больных с поражением лобных долей мозга
  3. B) Нарушение поведения при поражениях лобных долей мозга. Клинические данные
  4. C) Выпячивание промежутоного пузыря зачатка головного мозга,
  5. c) Нарушение решения арифметических задач у больных с поражением лобных долей мозга
  6. E) Нарушение мнестических процессов при поражении лобных долей мозга
  7. I . Принципы организации первичной реанимационной помощи новорожденным
  8. I. ЗНАЧЕНИЕ ИЗУЧЕНИЯ ТЕМЫ
  9. I. ОПИСАНИЕ АРТЕРИЙ ТВЕРДОЙ МОЗГОВОЙ ОБОЛОЧКИ СПИННОГО МОЗГА
  10. I. Права медицинской организации

 

Одним из первых методов оценки функциональной роли разных структур мозга явился метод повреждения или удаления участков мозга с помощью хирургических, химических и температурных воздействий. Другой рано возникший метод — это метод прямой электрической стимуляции, который применялся как в экспериментах на животных, так и во время нейрохирургических операций, когда находящийся в сознании больной мог оценить свои ощущения при раздражении различных точек коры и подкорковых структур. Например, при раздражении проекционной зрительной коры больной как бы видел цветовые пятна, вспышки пламени; стимуляция вторичных зрительных полей вызывала сложные зрительные образы, раздражение определенных подкорковых ядер — звуковые и зрительные галлюцинации. С помощью электрической стимуляции во время операции была уточнена локализация речевых зон, физиологические основы речи, памяти и эмоций.

Электроэнцефалография. В настоящее время наиболее распространенным и адекватным для изучения функциональной организации мозга является метод регистрации электроэнцефалограммы (ЭЭГ) — суммарной биоэлектрической активности, отводимой с поверхности головы. Многоканальная запись ЭЭГ в различных отведениях позволяет одновременно регистрировать электрическую активность функционально различных областей коры (рис. 51).

В ЭЭГ выделяются следующие типы ритмических колебаний: дельта-ритм 0,5—3 Гц; тета-ритм 4—7 Гц; альфа-ритм 8—13 Гц, основной ритм ЭЭГ, преимущественно выраженный в каудальных отделах коры (затылочной и теменных); бета-ритм 15—30 Гц; гамма-колебания > 30—60 Гц.

Эти ритмы различаются не только по своим частотным, но и функциональным характеристикам. Их амплитуда, топография, соотношение являются важным диагностическим признаком и критерием функциональной активности различных областей коры при реализации психической деятельности. Подробно этот вопрос будет рассмотрен в соответствующих главах.

Анализ ЭЭГ осуществляется как визуально, так и с помощью ЭВМ. Визуальная оценка применяется в клинической практике. С целью унификации и объективизации диагностических оценок используется метод структурного анализа нативной ЭЭГ, основанный на выделении функционально сходных признаков и их объединении в блоки, отражающие характер активности структур мозга различных уровней (коры больших полушарий, диэнцефальных, лимбических, стволовых). В возрастной нейрофизиологии этот метод успешно используется для оценки степени структурно функциональной зрелости мозга.

 


 

 

Рис. 51. Электрическая активность, зарегистрированная от

различных областей коры мозга человека. В скобках указаны

латинские обозначения областей коры

 

В настоящее время как в клинических, так и в исследовательских целях широко используются компьютерные методы анализа ЭЭГ, позволяющие оценить выраженность различных ритмов по их спектральной мощности и их статистическую взаимосвязь (корреляционный анализ и анализ функции когерентности ритмической активности). Оценка когерентности ритмической активности широко используется в исследовательских целях. Этот метод позволяет выявить степень сходства организации ритмов биоэлектрической активности в различных мозговых структурах. Сходство организации рассматривается как необходимая предпосылка взаимодействия и адекватный показатель функциональной организации структур мозга при осуществлении различных видов деятельности. Рост значений функции когерентности (КОГ) биопотенциалов в ряде областей коры отражает увеличение вероятности их функциональной интеграции.

Вызванные потенциалы. Другой тип суммарной электрической активности — вызванные потенциалы (ВП). Они возникают в ответ на внешние воздействия и отражают изменения функциональной активности областей коры, осуществляющих прием и обработку поступающей информации. ВП представляет собой последовательность разных по полярности — позитивных и негативных — компонентов, возникающих после предъявления стимула (рис. 52). Количественными характеристиками ВП являются латентный период (время от начала воздействия стимула до достижения максимального значения компонента) и амплитуда компонента. Компоненты ВП принято обозначать латинскими буквами по полярности: N— негативные, Р— позитивные, — и цифровыми индексами — по величине латентности в миллисекундах. Например, положительный компонент с латентным периодом 300 мс после предъявления стимула обозначается как Р300. Метод регистрации ВП широко используется при анализе процесса восприятия. В экспериментальных моделях на животных при одновременной регистрации ВП и активности отдельных нейронов была показана связь основного комплекса ВП с возбудительными и тормозными процессами, протекающими на разных уровнях коры больших полушарий. Было обнаружено, что начальные компоненты ВП — это так называемые экзогенные компоненты, связанные с активностью пирамидных клеток, которые воспринимают сенсорную информацию. Возникновение других, более поздних, фаз ответа обусловлено обработкой информации, осуществляемой нейронными аппаратами коры при участии не только сенсорного афферентного потока, но и импульсации, поступающей из других отделов мозга, в частности из ассоциативных и неспецифических ядер таламуса, и по внутрикорковым связям из других корковых зон.

 

 

50 мс

Рис. 52. Зрительный вызванный потенциал. Начало ответа совпадает

с моментом предъявления светового стимула

 

Эти нейрофизиологические исследования положили начало широкому использованию ВП человека для анализа процесса восприятия.

У человека ВП имеет относительно небольшую амплитуду по сравнению с амплитудой фоновой ЭЭГ, и его изучение стало возможно только при использовании компьютерной техники для выделения сигнала из шума и последующего усреднения реакций, возникающих в ответ на ряд однотипных стимулов. ВП, регистрируемые при предъявлении сложных сенсорных сигналов и решении определенных когнитивных задач, получили название связанных с событиями потенциалов (ССП).

При изучении ССП наряду с анализом параметров, используемых при анализе ВП, — латентного периода и амплитуды компонентов — используются и другие специальные методы обработки, позволяющие в сложной конструкции ВП выделить компоненты, связанные с определенными когнитивными операциями: метод главных компонент и метод разностных кривых.

Метод главных компонент основан на использовании факторного анализа, позволяющего выделить факторы, наиболее тесно связанные с определенными операциями и приходящиеся на временной интервал, соответствующий тому или иному компоненту ССП. Это позволяет вычленить функциональную роль данного компонента в анализируемом процессе. С той же целью используется метод разностных кривых. Он заключается в следующем: сначала регистрируют фоновую кривую ССП при нейтральной стимуляции, а затем — кривую ССП при предъявлении конкретных задач. Потом с помощью компьютера эти две кривые сравнивают, и по преимущественной выраженности определенных компонентов делается заключение об их связи с выполняемой задачей.

Топографическое картирование. Многоканальная регистрация ЭЭГ дает возможность представить полученные в результате компьютерной обработки ЭЭГ данные в удобном для восприятия виде — как карты одномоментного пространственного распределения по коре мощности разных ритмов ЭЭГ и амплитуд компонентов ВП или других характеристик. Последовательность таких карт дает представление о динамике процессов. На топографических картах мозга цветом и его интенсивностью кодируются различные параметры ЭЭГ. Такая визуализация позволяет охарактеризовать функциональную организацию мозга при разных состояниях и видах деятельности.

Компьютерная томография основана на использовании вычислительной техники и новейших технических методов, позволяющих получить множество объемных изображений одной и той же структуры мозга.

Из методов компьютерной томографии наиболее часто используется метод позитронно-эмиссионной томографии (ПЭТ). Этот метод позволяет охарактеризовать активность различных структур мозга на основе изменения метаболических процессов. При обменных процессах в нервных клетках используются определенные химические элементы, которые можно пометить радиоизотопами. Усиление активности сопровождается усилением обменных процессов, и в областях повышенной активности образуется скопление изотопов, по которым и судят об участии тех или иных структур в психических процессах (рис. 53).

Другим широко используемым методом является ядерно-магнитно-резонансная томография. Метод основан на получении изображения, отражающего распределение плотности ядер водорода (протонов), при помощи электромагнитов, расположенных вокруг тела человека. Водород является одним из химических элементов, участвующих в метаболических процессах, и потому его распределение в структурах мозга — надежный показатель их активности. Преимущество ядерно-магнитно-резонансного метода состоит в том, что его использование не требует введения в организм радиоизотопов, и вместе с тем этот метод позволяет получить четкие изображения «срезов» мозга в различных плоскостях, так же как и метод ПЭТ.

 


 

Рис. 53. Компьютерная томограмма мозга при решении различных вербальных задач

Вопросы и задания

 

1. Охарактеризуйте структуру и функциональную роль спинного мозга.

2. Назовите основные функции продолговатого, среднего и промежуточного мозга. Какова роль гипоталамуса в регуляции функций организма?

3. Охарактеризуйте состав и функции лимбической системы.

4. Какие функционально различные области коры вы знаете?

5. Как меняется соотношение проекционных и ассоциативных областей коры в процессе эволюции?

6. Назовите основные этапы и закономерности развития коры больших полушарий.

7. Какие методы используются для оценки функциональной организации мозга?

 

 

ПИРАМИДНЫЙ НЕЙРОН ИНТЕРНЕЙРОНЫ

Рис. 44. Типы нейронов в коре больших полушарий человека

 

 

Вопросы и задания

1. В чем значение нервной системы?

2. Перечислите основные отделы нервной системы? Кратко охарактеризуйте их.

3. Что является элементарной структурной единицей нервной системы? Из каких частей она состоит?

4. Синапсы и их роль. Как осуществляется передача сигналов с одной клетки на другую?

5. Охарактеризуйте возрастные преобразования нейронов и нервных волокон.


Дата добавления: 2015-10-19 | Просмотры: 682 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.006 сек.)