АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Типы структурных повреждений ДНК
Мутация.ДНК может повреждаться разнообразными мутагенами, к которым относятся окисляющие и алкилирующие вещества, а также высокоэнергетическая электромагнитная радиация — ультрафиолетовое и рентгеновское излучение. Тип повреждения ДНК зависит от типа мутагена. Например, ультрафиолет повреждает ДНК путём образования в ней димеров тимина, которые возникают при образовании ковалентных связей между соседними основаниями. Оксиданты, такие как свободные радикалы или перекись водорода, приводят к нескольким типам повреждения ДНК, включая модификации оснований, в особенности гуанозина, а также двухцепочечные разрывы в ДНК[24]. По некоторым оценкам, в каждой клетке человека окисляющими соединениями ежедневно повреждается порядка 500 оснований[25][26]. Среди разных типов повреждений наиболее опасные — это двухцепочечные разрывы, потому что они трудно репарируются и могут привести к потерям участков хромосом (делециям) и транслокациям. Многие молекулы мутагенов вставляются (интеркалируют) между двумя соседними парами оснований. Большинство этих соединений, например, этидий, даунорубицин, доксорубицин и талидомид имеют ароматическую структуру. Для того чтобы интеркалирующее соединение могло поместиться между основаниями, они должны разойтись, расплетая и нарушая структуру двойной спирали. Эти изменения в структуре ДНК мешают транскрипции и репликации, вызывая мутации. Поэтому интеркалирующие соединения часто являются канцерогенами, наиболее известные из которых — бензопирен, акридины, афлатоксин и бромистый этидий[27][28][29]. Несмотря на эти негативные свойства, в силу их способности подавлять транскрипцию и репликацию ДНК, интеркалирующие соединения используются в химиотерапии для подавления быстро растущих клеток рака[30].
Источники повреждения ДНК: УФ излучение,Радиация,Химические вещества,Ошибки репликации ДНК,Апуринизация — отщепление азотистых оснований от сахарофосфатного остова,Дезаминирование — отщепление аминогруппы от азотистого основания. Основные типы повреждения ДНК: Повреждение одиночных нуклеотидов, Повреждение пары нуклеотидов, Разрыв цепи ДНК, Образование поперечных сшивок между основаниями одной цепи или разных цепей ДНК.
Репарация — особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физических или химических агентов. Осуществляется специальными ферментными системами клетки. Ряд наследственных болезней (напр., пигментная ксеродерма) связан с нарушениями систем репарации.
Каждая из систем репарации включает следующие компоненты: фермент, «узнающий» химически изменённые участки в цепи ДНК и осуществляющий разрыв цепи вблизи от повреждения; фермент, удаляющий повреждённый участок; фермент (ДНК-полимераза), синтезирующий соответствующий участок цепи ДНК взамен удалённого; фермент (ДНК-лигаза), замыкающий последнюю связь в полимерной цепи и тем самым восстанавливающий её непрерывность.
Типы репарации.У бактерий имеются по крайней мере 3 ферментные системы, ведущие репарацию — прямая, эксцизионная и пострепликативная. Прямая репарация наиболее простой путь устранения повреждений в ДНК, в котором обычно задействованы специфические ферменты, способные быстро (как правило, в одну стадию) устранять соответствующее повреждение, восстанавливая исходную структуру нуклеотидов. Так действует, например, O6-метилгуанин-ДНК-метилтрансфераза, которая снимает метильную группу с азотистого основания на один из собственных остатков цистеина. Эксцизионная репарация (англ. excision — вырезание) включает удаление повреждённых азотистых оснований из ДНК и последующее восстановление нормальной структуры молекулы. Пострепликативная репарация-Tип репарации, имеющей место в тех случаях, когда процесс эксцизионной репарации недостаточен для полного исправления повреждения: после репликации с образованием ДНК, содержащей поврежденные участки, образуются одноцепочечные бреши, заполняемые в процессе гомологичной рекомбинации при помощи белка RecA. Пострепликативная репарация была открыта в клетках E.Coli, не способных выщеплять тиминовые димеры. Это единственный тип репарации, не имеющий этапа узнавания повреждения.
49. Спонтанный мутагенез, т.е. процесс возникновения мутаций в организме в отсутствие намеренного воздействия мутагенами, представляет собой конечный результат суммарного воздействия различных факторов, приводящих к повреждениям генетических структур в процессе жизнедеятельности организма. Причины возникновения спонтанных мутаций можно разделить на: • экзогенные (естественная радиация, экстремальные температуры и др.); • эндогенные (спонтанно возникающие в организме химические соединения-метаболиты, вызывающие мутагенный эффект; ошибки репликации, репарации, рекомбинации; действие генов-мутаторов и антимутаторои; транспозиция мобильных генетических элементов и др.). Организм человека за год поглощает в среднем 0,095 рад энергии ионизирующих излучений, поступающих от естественной радиации (у-излучение Земли, космические лучи, радиоактивные элементы земной коры и атмосферы такие, как радон, углерод С, калий К40 и др.). Эта доза зависит от высоты над уровнем моря и географической широты. Кроме того, радиация выше в районах, где есть выходы на поверхность первичных пород. У человека доля мутаций, индуцированных естественной радиацией составляет до 25%, а у дрозофилы —лишь 0, 1% всех спонтанных мутаций. Относительно УФ-излучения выше уже было указано, что оно практически не играет никакой роли в возникновении мутаций в половых клетках эукариот, не обладая достаточной проникающей способностью. В то же время, у одноклеточных организмов и вирусов под действием ультрафиолета образуется значительная часть спонтанных мутаций.
50. Геномные мутации характеризуются изменением числа хромосом. У человека известны полиплоидия (в том числе тетраплоидия и триплоидия) и анеуплоидия. Полиплоидия — увеличение числа наборов хромосом, кратное гаплоидному (Зn, 4n, 5n и т.д.). Причины: двойное оплодотворение и отсутствие первого мейотического деления. У человека полиплоидия, а также большинство анеуплоидий приводят к формированию леталей. Анеуплоидия — изменение (уменьшение — моносомия, увеличение — трисомия) числа хромосом в диплоидном наборе, т.е. не кратное гаплоидному (2n+1, 2n-1 и т.д.). Механизмы возникновения: нерасхождение хромосом (хромосомы в анафазе отходят к одному полюсу, при этом на каждую гамету с одной лишней хромосомой приходится другая — без одной хромосомы) и «анафазное отставание» (в анафазе одна из передвигаемых хромосом отстаёт от всех других). Трисомия — наличие трёх гомологичных хромосом в кариотипе (например, по 21-й паре, что приводит к развитию синдрома Дауна; по 18-й паре — синдрома Эдвардса; по 13-й паре — синдрома Патау). Моносомия — наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная совместимая с жизнью моносомия у человека — по хромосоме X — приводит к развитию синдрома Шерешевского—Тернера (45,Х0).
51.Частотой аллеля называют отношение количества данных аллелей у всех особей к общему количеству аллелей в популяции. Частоту доминантного аллеля обычно обозначают буквой p, частоту рецессивного аллеля – буквой q. Если ген представлен двумя аллелями, то выполняется математическое равенство p + q = 1.
Таким образом, зная частоту одного из аллелей, можно определить частоту и другого аллеля. Так, если частота доминантного аллеля равна 78 %, то частота рецессивного аллеля равняется q = 1 – p = 1 – 0,78 = 0,22 (или 22 %). Для частот аллелей существует условие равновесия Харди–Вайнберга. Частоты доминантного и рецессивного аллелей остаются неизменными, если в популяции выполняются следующие условия: размеры популяции достаточно велики; спаривание и размножение особей происходит случайным образом; естественный отбор отсутствует (все генотипы одинаково приспособлены к внешним условиям); различные поколения не скрещиваются между собой; не возникает новых мутаций; отсутствует обмен генами с другими популяциями.
Дата добавления: 2015-12-16 | Просмотры: 878 | Нарушение авторских прав
|