АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

ВИДЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

Прочитайте:
  1. Биологические эффекты малых доз ионизирующих излучений.
  2. Биологическое действие ионизирующих излучений
  3. Биологическое действие ионизирующих излучений на клетку. Особенности действия ИИ на организм теплокровных животных. Основные реакции организма человека на действие ИИ.
  4. Биологическое действие ионизирующих излучений.
  5. Взаимодействие излучений с веществом. Дозы излучения и единицы ее измерения.
  6. Виды ионизирующих излучений и их свойства
  7. Виды ионизирующих излучений и их свойства.
  8. Генетическое действие ионизирующих излучений
  9. Гигиена труда при работе с источниками токов УВЧ, СВЧ, инфракрасного, ультрафиолетового излучений в ЛПО. Организация защиты персонала.

К ионизирующим излучениям относятся:

· гамма-излучение – электромагнитное фотонное излучение, испускаемое при ядерных превращениях или при ассимиляции частиц;

· характеристическое излучение – фотонное излучение с дискретным спектром, испускаемое при изменении энергетического состояния атома;

· тормозное излучение – фотонное излучение с непрерывным спектром, испускаемое при изменении кинетической энергии заряженных частиц. Тормозное излучение возникает в среде, окружающей источник бета-излучения, в рентгеновских трубках, ускорителях электронов и т. п.;

· рентгеновское излучение – совокупность тормозного и характеристического излучений, диапазон энергии фотонов которого составляет 1 КэВ – 1 МэВ;

· корпускулярное излучение – ионизирующее излучение, состоящее из частиц с массой покоя, отличной от нуля (альфа- и бета-частиц, протонов, нейтронов и др.).

По взаимодействию ионизирующего излучения с веществом оно подразделяется на несколько видов.

Альфа-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде ядер или ядерных реакциях. Этот вид излучения наблюдается преимущественно у естественных радиоактивных элементов (радий, торий, уран и др.). Их энергия не превышает несколько мегаэлектроновольт. Длина пробега в воздухе 2,5 – 9 см, в биологических тканях несколько десятков микрометров. Обладая сравнительно большой массой, альфа-частицы быстро теряют свою энергию при взаимодействии с веществом, что обусловливает их низкую проникающую способность и высокую удельную ионизацию.

Бета излучение – поток электронов или позитронов, возникающих при радиоактивном распаде. Энергия бета-частиц не превышает нескольких мегаэлектроновольт. Максимальный пробег в воздухе составляет около 1700 см, в тканях – 2,5 мм. Ионизирующая способность бета-частиц ниже, а проникающая способность выше, чем альфа-частиц, так как они обладают значительно меньшей массой и при равной с альфа-частицами энергией имеют меньший заряд. В результате ионизации в некоторых средах происходят вторичные процессы: люминесценция, фотохимические реакции, образование химически активных радикалов.

Гамма излучение. Его энергия находится в пределах 0,01 – 10 МэВ. Проникающая способность гамма-излучения очень высокая и находится в прямой зависимости от энергии.

Рентгеновское излучение – характеризуется очень короткой длиной волны (0,006 – 2 нм). Важнейшим по свойствам при взаимодействии с веществом является большая проникающая способность при незначительной ионизации среды.

Способностью преобразовывать свою энергию в упругих и неупругих взаимодействиях с ядрами атомов обладают нейтроны, которые сами не несут на себе электрического заряда. При упругих взаимодействиях возникает обычная ионизация вещества. При неупругих – возникает вторичное излучение. В зависимости от кинетической энергии нейтроны разделяются на сверхбыстрые, быстрые, промежуточные, медленные и тепловые.

Проникающая способность нейтронов существенно зависит от их энергии и состава атомов вещества, с которыми они взаимодействуют.


Дата добавления: 2015-02-06 | Просмотры: 1002 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)