АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Подвижные генетические элементы

Прочитайте:
  1. IV. Генетические дефекты и эндокринные болезни
  2. Алиментарное ожирение, этиопатогенетические механизмы, клинико-эпидемиологические особенности, лечение и профилактика.
  3. Виды шока, патогенетические механизмы, причины.
  4. Внимательно посмотрите на рисунки и запишите названия внутренних органов, используя латинские и греческие терминоэлементы.
  5. Вопрос № 57 Минеральные соли, их источники, гигиеническое значение. Макро и микроэлементы. Кислотно-щелочное состояние организма.
  6. ВРОЖДЕННЫЕ (ГЕНЕТИЧЕСКИЕ) НАРУШЕНИЯ В ЛЕГКИХ
  7. ГЕНЕТИКА И ГЕНЕТИЧЕСКИЕ МЕТОДЫ ИДЕНТИФИКАЦИИ МИКРООРГАНИЗМОВ
  8. Генетика как наука. Основные генетические понятия. Связь с другими науками.
  9. Генетические аспекты
  10. Генетические аспекты

В состав бактериального генома, как в бак­териальную хромосому, так и в плазмиды, входят подвижные генетические элементы. К подвижным генетическим элементам от­носятся вставочные последовательности и транспозоны.

Вставочные (инсерционные) последова­тельности IS-элементы — это участки ДНК, способные как целое перемещаться из одного участка репликона в другой, а также между репликонами. Они содержат лишь те гены, которые необходимы для их собственного перемещения — транс­позиции: ген, кодирующий фермент транспозазу, обеспечивающую процесс исключения IS-элемента из ДНК и его интеграцию в но­вый локус, и ген, детерминирующий синтез репрессора, который регулирует весь процесс перемещения.

Отличительной особенностью IS-элементов является наличие на концах вставочной последовательности инвертированных повто­ров. Эти инвертированные повторы узнает фермент транспозаза. Транспозаза осуществляет одноцепочечные разрывы це­пей ДНК, расположенных по обе стороны от подвижного элемента. Оригинальная копия IS-элемента остается на прежнем месте, а ее реплицированный дупликат перемещается на новый участок.

Перемещение подвижных генетических элементов принято называть репликативной или незаконной рекомбинацией. Однако в отличие от бактериальной хромосомы и плазмид подвижные генетические элементы не являются самостоятельными репликонами, так как их репликация — составной элемент репликации ДНК репликона, в составе кото­рого они находятся.

Известно несколько разновидностей IS-элементов, которые различаются по раз­мерам и по типам и количеству инвертиро­ванных повторов.

Транспозоны — это сегменты ДНК, облада­ющие теми же свойствами, что и IS-элементы, но имеющие структурные гены, т. е. гены, обеспечивающие синтез молекул, обладаю­щих специфическим биологическим свойс­твом, например токсичностью, или обеспечи­вающих устойчивость к антибиотикам.

Перемещаясь по репликону или между реп­ликонами, подвижные генетические элемен­ты вызывают:

1. Инактивацию генов тех участков ДНК, куда они, переместившись, встраиваются.

2. Образование повреждений генетического материала.

3. Слияние репликонов, т. е. встраивание плазмиды в хромосому.

4. Распространение генов в популяции бак­терий, что может приводить к изменению биологических свойств популяции, смене возбудителей инфекционных заболеваний, а также способствует эволюционным процес­сам среди микробов.

Изменения бактериального генома, а следо­вательно, и свойств бактерий могут происхо­дить в результате мутаций и рекомбинаций.

 

№ 37 Механизмы передачи генетического материала у бактерий.

Конъюгация бактерий состоит в переходе генети­ческого материала (ДНК) из клетки-донора («мужской») в клет­ку-реципиент («женскую») при контакте клеток между собой.

Мужская клетка содержит F-фактор, или половой фактор, который контролирует синтез так называемых половых пилей, или F-пилей. Клетки, не содержа­щие F-фактора, являются женскими; при получении F-фактора они превращаются в «мужские» и сами становятся донорами. F-фактор располагается в цитоплазме в виде кольцевой двунитчатой молекулы ДНК, т. е. является плазмидой. Молекула F-фак­тора значительно меньше хромосомы и содержит гены, контро­лирующие процесс конъюгации, в том числе синтез F-пилей. При конъюгации F-пили соединяют «мужскую» и «женскую» клетки, обеспечивая переход ДНК через конъюгационный мостик или F-пили. Клетки, содержащие F-фактор в цитоплазме, обозначаются F+; они передают F-фактор клеткам, обозначае­мым F" («женским»), не утрачивая донорской способности, так как оставляют копии F-фактора. Если F-фактор включается в хромосому, то бактерии приобретают способность передавать фрагменты хромосомной ДНК и называются Hfr-клетками (от англ. high frequency of recombination — высокая частота реком­бинаций), т.е. бактериями с высокой частотой рекомбинаций. При конъюгации клеток Hfr и клеток F" хромосома разрывается и передается с определенного участка (начальной точки) в клет­ку F", продолжая реплицироваться. Перенос всей хромосомы может длиться до 100 мин.

Переносимая ДНК взаимодействует с ДНК реципиента — происходит гомологичная рекомбинация. Прерывая процесс конъ­югации бактерий, можно определять последовательность распо­ложения генов в хромосоме. Иногда F-фактор может при выхо­де из хромосомы захватывать небольшую ее часть, образуя так называемый замещенный фактор — F'.

При конъюгации происходит только частичный перенос ге­нетического материала, поэтому ее не следует отождествлять пол­ностью с половым процессом у других организмов.

Трансдукция — передача ДНК от бактерии-донора к бактерии-реципиенту при участии бактериофага. Различают неспецифическую (общую) трансдукцию, при которой возможен перенос любого фрагмен­та ДНК донора, и специфическую — перенос определен­ного фрагмента ДНК донора только в определенные участки ДНК реципиента. Неспецифическая трансдукция обусловлена включе­нием ДНК донора в головку фага дополнительно к геному фага или вместо генома фага (дефектные фаги). Специфическая транс­дукция обусловлена замещением некоторых генов фага генами хромосомы клетки-донора. Фаговая ДНК, несущая фрагменты хромосомы клетки-донора, включается в строго определенные участки хромосомы клетки-реципиента. Таким образом, привно­сятся новые гены и ДНК фага в виде профага репродуцируется вместе с хромосомой, т.е. этот процесс сопровождается лизоге-нией. Если фрагмент ДНК, переносимый фагом, не вступает в рекомбинацию с хромосомой реципиента и не реплицируется, но с него считывается информация о синтезе соответствующего про­дукта, такая трансдукция называется абортивной.

Трансформация заключа­ется в том, что ДНК, выделенная из бактерий в свободной ра­створимой форме, передается бактерии-реципиенту. При транс­формации рекомбинация происходит, если ДНК бактерий род­ственны друг другу. В этом случае возможен обмен гомологич­ных участков собственной и проникшей извне ДНК. Впервые явление трансформации описал Ф. Гриффите (1928). Он вводил мышам живой невирулентный бескапсульный R-штамм пневмо­кокка и одновременно убитый вирулентный капсульный S-штамм пневмококка. Из крови погибших мышей был выделен вирулен­тный пневмококк, имеющий капсулу убитого S-штамма пнев­мококка. Таким образом, убитый S-штамм пневмококка передал наследственную способность капсулообразования R-штамму пнев­мококка. О. Эвери, К. Мак-Леод и М. Мак-Карти (1944) дока­зали, что трансформирующим агентом в этом случае является ДНК. Путем трансформации могут быть перенесены различные признаки: капсулообразование, устойчивость к антибиотикам, синтез ферментов.

Изучение бактериальной трансформации позволило установить роль ДНК как материального субстрата наследственности. При изучении генетической трансформации у бактерий были разра­ботаны методы экстракции и очистки ДНК, биохимические и биофизические методы ее анализа.

 

№ 38 Плазмиды бактерий, их функции и свойства. Использова­ние плазмид в генной инженерии.

Плазмиды — внехромосомные мобильные генетические структуры бактерий, представляющие собой замкнутые кольца двунитчатой ДНК. По размерам составляют 0,1—5 % ДНК хромосомы. Плаз­миды способны автономно копироваться (реплицироваться) и существовать в цитоплазме клетки, поэтому в клетке может быть несколько копий плазмид. Плазмиды могут включаться (интег­рировать) в хромосому и реплицироваться вместе с ней. Разли­чают трансмиссивные и нетрансмиссивные плазмиды. Трансмиссив­ные (конъюгативные) плазмиды могут передаваться из одной бактерии в другую.

Среди фенотипических признаков, сооб­щаемых бактериальной клетке плазмидами, можно выделить следующие:

1) устойчивость к антибиотикам;

2) образование колицинов;

3) продукция факторов патогенности;

4) способность к синтезу антибиотических веществ;

5) расщепление сложных органических ве­ществ;

6) образование ферментов рестрикции и модификации.

Термин «плазмиды» впервые введен американским ученым Дж. Ледербергом (1952) для обозначения полового фактора бак­терий. Плазмиды несут гены, не обязательные для клетки-хозя­ина, придают бактериям дополнительные свойства, которые в определенных условиях окружающей среды обеспечивают их вре­менные преимущества по сравнению с бесплазмидными бакте­риями.

Некоторые плазмиды находятся под стро­гим контролем. Это означает, что их реплика­ция сопряжена с репликацией хромосомы так, что в каждой бактериальной клетке присутс­твует одна или, по крайней мере, несколько копий плазмид.

Число копий плазмид, находящихся под слабым контролем, может достигать от 10 до 200 на бактериальную клетку.

Для характеристики плазмидных реплико-нов их принято разбивать на группы совмести­мости. Несовместимость плазмид связана с не­способностью двух плазмид стабильно сохра­няться в одной и той же бактериальной клетке. Несовместимость свойственна тем плазмидам, которые обладают высоким сходством репликонов, поддержание которых в клетке регули­руется одним и тем же механизмом.

Некоторые плазмиды могут обратимо встраиваться в бактериальную хромосому и функционировать в виде единого репликона. Такие плазмиды называются интегративными или эписомами.

У бактерий различных видов обнаружены R-плазмиды, несу­щие гены, ответственные за множественную устойчивость к лекарственным препаратам — антибиотикам, сульфаниламидам и др., F-плазмиды, или половой фактор бактерий, определяющий их способность к конъюгации и образованию половых пилей, Ent-плазмиды, детерминирующие продукцию энтеротоксина.

Плазмиды могут определять вирулентность бактерий, напри­мер возбудителей чумы, столбняка, способность почвенных бак­терий использовать необычные источники углерода, контроли­ровать синтез белковых антибиотикоподобных веществ — бактериоцинов, детерминируемых плазмидами бактериоциногении, и т. д. Существование множества других плазмид у микроорганиз­мов позволяет полагать, что аналогичные структуры широко рас­пространены у самых разнообразных микроорганизмов.

Плазмиды подвержены рекомбинациям, мутациям, могут быть элиминированы (удалены) из бактерий, что, однако, не влияет на их основные свойства. Плазмиды являются удобной моделью для экспериментов по искусственной реконструкции генетичес­кого материала, широко используются в генетической инжене­рии для получения рекомбинантных штаммов. Бла­годаря быстрому самокопированию и возможности конъюгаци-онной передачи плазмид внутри вида, между видами или даже родами плазмиды играют важную роль в эволюции бактерий.

 

№ 39 Медицинская биотехнология, ее задачи и достижения.

 

Биотехнология представляет собой область знаний, которая воз­никла и оформилась на стыке микробиологии, молекулярной биологии, генетической инженерии, химической технологии и ряда других наук. Рождение биотехнологии обусловлено потреб­ностями общества в новых, более дешевых продуктах для на­родного хозяйства, в том числе медицины и ветеринарии, а также в принципиально новых технологиях. Биотехнология — это получение продуктов из био­логических объектов или с применением биологических объек­тов. В качестве биологических объектов могут быть использова­ны организмы животных и человека (например, получение им­муноглобулинов из сывороток вакцинированных лошадей или людей; получение препаратов крови доноров), отдельные орга­ны (получение гормона инсулина из поджелудочных желез круп­ного рогатого скота и свиней) или культуры тканей (получение лекарственных препаратов). Однако в качестве биологических объектов чаще всего используют одноклеточные микроорганиз­мы, а также животные и растительные клетки.

Клетки животных и растений, микробные клетки в процессе жизнедеятельности (ассимиляции и диссимиляции) образуют но­вые продукты и выделяют метаболиты, обладающие разнообраз­ными физико-химическими свойствами и биологическим дей­ствием.

Биотехнология использует эту продукцию клеток как сырье, которое в результате технологической обработки превращается в конечный продукт. С помощью биотехнологии получают мно­жество продуктов, используемых в различных отраслях:

• медицине (антибиотики, витамины, ферменты, аминокисло­ты, гормоны, вакцины, антитела, компоненты крови, диаг­ностические препараты, иммуномодуляторы, алкалоиды, пи­щевые белки, нуклеиновые кислоты, нуклеозиды, нуклеоти-ды, липиды, антиметаболиты, антиоксиданты, противоглис­тные и противоопухолевые препараты);

• ветеринарии и сельском хозяйстве (кормовой белок: кормо­вые антибиотики, витамины, гормоны, вакцины, биологичес­кие средства защиты растений, инсектициды);

• пищевой промышленности (аминокислоты, органические кис­лоты, пищевые белки, ферменты, липиды, сахара, спирты, дрожжи);

• химической промышленности (ацетон, этилен, бутанол);

• энергетике (биогаз, этанол).

Следовательно, биотехнология направлена на создание диаг­ностических, профилактических и лечебных медицинских и ве­теринарных препаратов, на решение продовольственных вопро­сов (повышение урожайности, продуктивности животноводства, улучшение качества пищевых продуктов — молочных, кондитер­ских, хлебобулочных, мясных, рыбных); на обеспечение мно­гих технологических процессов в легкой, химической и других отраслях промышленности. Необходимо отметить также все воз­растающую роль биотехнологии в экологии, так как очистка сточных вод, переработка отходов и побочных продуктов, их деградация (фенол, нефтепродукты и другие вредные для окру­жающей среды вещества) осуществляются с помощью микро­организмов.

В настоящее время в биотехнологии выделяют медико-фарма­цевтическое, продовольственное, сельскохозяйственное и эколо­гическое направления. В соответствии с этим биотехнологию можно разделить на медицинскую, сельскохозяйственную, про­мышленную и экологическую. Медицинская в свою очередь под­разделяется на фармацевтическую и иммунобиологическую, сель­скохозяйственная — на ветеринарную и биотехнологию расте­ний, а промышленная — на соответствующие отраслевые направ­ления (пищевая, легкая промышленность, энергетика и т. д.).

Биотехнологию также подразделяют на традиционную (ста­рую) и новую. Последнюю связывают с генетической инжене­рией. Общепризнанное определение предмета «биотехнология» от­сутствует и даже ведется дискуссия о том, наука это или про­изводство.

 

№ 40 Молекулярно-биологические методы, используемые в диа­гностике инфекционных болезней (ПЦР, рестрикционный анализ и др.).

Полимеразная цепная реакция позволяет обнаружить микроб в ис­следуемом материале (воде, продуктах, ма­териале от больного) по наличию в нем ДНК микроба без выделения последнего в чистую культуру.

Для проведения этой реакции из исследу­емого материала выделяют ДНК, в которой определяют наличие специфичного для дан­ного микроба гена. Обнаружение гена осу­ществляют его накоплением. Для этого необ­ходимо иметь праймеры комплементарного З'-концам ДНК. исходного гена. Накопление (амплификация) гена выполняется следую­щим образом. Выделенную из исследуемого материала ДНК нагревают. При этом ДНК распадается на 2 нити. Добавляют праймеры. Смесь ДНК и праймеров охлаждают. При этом праймеры, при наличии в смеси ДНК искомо­го гена, связываются с его комплементарными участками. Затем к смеси ДНК и праймера добавляют ДНК-полимеразу и нуклеотиды. Устанавливают температуру, оптимальную для функционирования ДНК-полимеразы. В этих условиях, в случае комплементарное™ ДНК гена и праймера, происходит присоединение нуклеотидов к З'-концам праймеров, в резуль­тате чего синтезируются две копии гена. После этого цикл повторяется снова, при этом ко­личество ДНК гена будет увеличиваться каждый раз вдвое. Проводят реакцию в специальных приборах — амплификаторах. ПЦР применяется для диагностики вирусных и бактериальных инфекций.

Рестрикционный анализ. Данный метод основан на применении фер­ментов, носящих название рестриктаз. Рестриктазы представляют собой эндонук-леазы, которые расщепляют молекулы ДНК, разрывая фосфатные связи не в произвольных местах, а в определенных последовательностях нуклеотидов. Особое значение для методов мо­лекулярной генетики имеют рестриктазы, кото­рые узнают последовательности, обладающие центральной симметрией и считывающиеся одинаково в обе стороны от оси симметрии. Точка разрыва ДНК может или совпадать с осью симметрии, или быть сдвинута относи­тельно нее.

В настоящее время из различных бактерий выделено и очищено более 175 различных рестриктаз, для которых известны сайты (участки) узнавания (рестрикции). Выявлено более 80 различных типов сайтов, в которых может про­исходить разрыв двойной спирали ДНК.

В геноме конкретной таксономической еди­ницы находится строго определенное (генети­чески задетерминированное) число участков узнавания для определенной рестриктазы.

Если выделенную из конкретного микроба ДНК обработать определенной рестриктазой, то это приведет к образованию строго опреде­ленного количества фрагментов ДНК фикси­рованного размера.

Размер каждого типа фрагментов можно узнать с помощью электрофореза в агарозном геле: мелкие фрагменты перемещаются в геле быстрее, чем более крупные фрагменты, и длина их пробега больше. Гель окрашива­ют бромистым этидием и фотографируют в УФ-излучении. Таким образом можно полу­чить рестрикционную карту определенного вида микробов.

Сопоставляя карты рестрикции ДНК, вы­деленных из различных штаммов, можно оп­ределить их генетическое родство, выявить принадлежность к определенному виду или роду, а также обнаружить участки, подвергну­тые мутациям.

Этот метод используется также как началь­ный этап метода определения последователь­ности нуклеотидных пар (секвенирования) и метода молекулярной гибридизации.

Метод молекулярной гибридизации позволяет выявить степень сходства раз­личных ДНК. Применяется при идентифи­кации микробов для определения их точного таксономического положения.

Метод основан на способности двухцепочечной ДНК при повышенной температуре (90 °С) в щелочной среде денатурировать, т. е. расплетаться на две нити, а при понижении температуры на 10 °С вновь восстанавливать исходную двухцепочечную структуру. Метод требует наличия молекулярного зонда.

Зондом называется одноцепочечная мо­лекула нуклеиновой кислоты, меченная ра­диоактивными нуклидами, с которой сравнивают исследуемую ДНК.

Для проведения молекулярной гибридизации исследуемую ДНК расплетают указанным выше способом, одну нить фиксируют на специальном фильтре, который затем помещают в раствор, со­держащий радиоактивный зонд. Создаются ус­ловия, благоприятные для образования двойных спиралей. В случае наличия комплементарности между зондом и исследуемой ДНК, они образу­ют между собой двойную спираль.

Риботипирование и опосредованная транскрипцией амплификация рибосомальной РНК. Последовательность нуклеотидных основа­ний в оперонах, кодирующих рРНК, отлича­ется консервативностью, присущей каждомувиду бактерий. Эти опероны представлены на бактериальной хромосоме в нескольких ко­пиях. Фрагменты ДНК, полученные после об­работки ее рестриктазами, содержат последо­вательности генов рРНК, которые могут быть обнаружены методом молекулярной гибри­дизации с меченой рРНК соответствующего виды бактерий. Количество и локализация копий оперонов рРНК и рестрикционный состав сайтов как внутри рРНК-оперона, так и по его флангам варьируют у различных вида бактерий. На основе этого свойства построен метод риботипирования, который позволяет производить мониторинг выделенных штам­мов и определение их вида. В настоящее вре­мя риботипирование проводится в автомати­ческом режиме в специальных приборах.

Опосредованная транскрипцией амплифика­ция рРНК используется для диагностики сме­шанных инфекций. Этот метод основан на обнаружении с помощью молекулярной гиб­ридизации амплифицированных рРНК, спе­цифичных для определенного вида бактерий. Исследование проводится в три этапа:

1. Амплификация пула рРНК на матрице вы­деленной из исследуемого материала ДНК при помощи ДНК-зависимой РНК-полимеразы.

2. Гибридизация накопленного пула рРНК с комплементарными видоспецифическим рРНК олигонуклеотидами, меченными флюорохромом или ферментами.

3. Определение продуктов гибридизации методами денситометрии, иммунофермент-ного анализа (ИФА).

Реакция проводится в автоматическом ре­жиме в установках, в которых одномоментное определение рРНК, принадлежащих различ­ным видам бактерий, достигается разделе­нием амплифицированного пула рРНК на несколько проб, в которые вносятся компле­ментарные видоспецифическим рРНК мече­ные олигонуклеотиды для гибридизации.

 

№ 41 Понятие о химиотерапии. История открытия химиопрепаратов.

Химиотерапия — специфическое антимикробное, антипаразитар­ное лечение при помощи химических веществ. Эти вещества обла­дают важнейшим свойством — избирательностью действия против болезнетворных микроорганизмов в условиях макроорганизма.

Основоположником химиотерапии является немецкий химик, лауреат Нобелевской премии П.Эрлих, который установил, что химические вещества, содержащие мышьяк, губительно действу­ют на спирохеты и трипаносомы, и получил в 1910 г. первый химиотерапевтический препарат — сальварсан (соединение мы­шьяка, убивающее возбудителя, но безвредное для микроорга­низма).

В 1935 г. другой немецкий химик Г.Домагк обнаружил среди анилиновых красителей вещество — пронтозил, или красный стрептоцид, спасавший экспериментальных животных от стрепто­кокковой инфекции, но не действующий на эти бактерии вне организма. За это открытие Г.Домагк был удостоен Нобелевс­кой премии. Позднее было выяснено, что в организме происхо­дит распад пронтозила с образованием сульфаниламида, обла­дающего антибактериальной активностью как in vivo, так и in vitro.

Механизм действия сульфаниламидов (сульфонамидов) на микроорганизмы был открыт Р.Вудсом, установившим, что суль­фаниламиды являются структурными аналогами парааминобензойной кислоты (ПАБК), участвующей в биосинтезе фолиевой кислоты, необходимой для жизнедеятельности бактерий. Бакте­рии, используя сульфаниламид вместо ПАБК, погибают.

Первый природный антибиотик был открыт в 1929 г. англий­ским бактериологом А.Флемингом. При изучении плесневого гри­ба Penicillium notatum, препятствующего росту бактериальной культуры, А. Флеминг обнаружил вещество, задерживающее рост бактерий, и назвал его пенициллином. В 1940 г. Г. Флори и Э. Чейн получили очищенный пенициллин. В 1945 г. А Флеминг, Г. Флори и Э. Чейн стали Нобелевскими лауреатами.

В настоящее время имеется огромное количество химиотерапевтических препаратов, которые применяются для лечения за­болеваний, вызванных различными микроорганизмами.

 

№ 42 Антибиотики. Природные и синтетические. История открытия природных антибиотиков. Классификация ан­тибиотиков по химической структуре, механизму, спект­ру и типу действия. Способы получения.

Антибиотики — химиотерапевтические вещества, продуцируемые микроорганизмами, животными клетками, растениями, а также их производные и синтетические продукты, которые обладают избирательной спо­собностью угнетать и задерживать рост микроорганизмов, а также подавлять развитие злокачественных новообразований.

За тот период, который прошел со времени открытия П.Эрлиха, было получено более 10 000 различных антибиотиков, по­этому важной проблемой являлась систематизация этих препа­ратов. В настоящее время существуют различные классификации антибиотиков, однако ни одна из них не является общеприня­той.

В основу главной классификации антибиотиков положено их химическое строение.

Наиболее важными классами синтетических антибиотиков яв­ляются хинолоны и фторхинолоны (например, ципрофлоксацин), сульфаниламиды (сульфадиметоксин), имидазолы (метронидазол), нитрофураны (фурадонин, фурагин).

По спектру действия антибиотики делят на пять групп в зави­симости от того, на какие микроорганизмы они оказывают воз­действие. Кроме того, существуют противоопухолевые антибио­тики, продуцентами которых также являются актиномицеты. Каж­дая из этих групп включает две подгруппы: антибиотики широ­кого и узкого спектра действия.

Антибактериальные антибиотики составляют самую многочисленную группу препаратов. Преобладают в ней антиби­отики широкого спектра действия, оказывающие влияние на представителей всех трех отделов бактерий. К антибиотикам широкого спектра действия относятся аминогликозиды, тетрациклины и др. Антибиотики узкого спектра действия эффектив­ны в отношении небольшого круга бактерий, например полет-миксины действуют на грациликутные, ванкомицин влияет на грамположительные бактерии.

В отдельные группы выделяют противотуберкулезные, противолепрозные, противосифилитические препараты.

Противогрибковые антибиотики включают значитель­но меньшее число препаратов. Широким спектром действия об­ладает, например, амфотерицин В, эффективный при кандидозах, бластомикозах, аспергиллезах; в то же время нистатин, дей­ствующий на грибы рода Candida, является антибиотиком узко­го спектра действия.

Антипротозойные и антивирусные антибиотики на­считывают небольшое число препаратов.

Противоопухолевые антибиотики представлены препара­тами, обладающими цитотоксическим действием. Большинство из них применяют при многих видах опухолей, например митоми-цин С.

Действие антибиотиков на микроорганизмы связано с их спо­собностью подавлять те или иные биохимические реакции, про­исходящие в микробной клетке.

В зависимости от механизма дей­ствия различают пять групп антибиотиков:

1. антибиотики, нарушающие синтез клеточной стенки. К этой группе относятся, например, β-лактамы. Препараты этой груп­пы характеризуются самой высокой избирательностью дей­ствия: они убивают бактерии и не оказывают влияния на клет­ки микроорганизма, так как последние не имеют главного компонента клеточной стенки бактерий — пептидогликана. В связи с этим β -лактамные антибиотики являются наименее токсичными для макроорганизма;

2. антибиотики, нарушающие молекулярную организацию и синтез клеточных мембран. Примерами подоб­ных препаратов являются полимиксины, полиены;

3. антибиотики, нарушающие синтез белка; это наиболее многочисленная группа препаратов. Представителями этой группы являются аминогликозиды, тетрациклины, макроли-ды, левомицетин, вызывающие нарушение синтеза белка на разных уровнях;

4. антибиотики — ингибиторы синтеза нуклеиновых кислот. Например, хинолоны нарушают синтез ДНК, рифампицин — синтез РНК;

5. антибиотики, подавляющие синтез пуринов и аминокислот. К этой группе относятся, например, сульфаниламиды.


Дата добавления: 2015-02-06 | Просмотры: 836 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.013 сек.)