АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Физиологические основы скоростно-силовых качеств (мощности)

Прочитайте:
  1. D. ОСНОВЫ МЕДИЦИНСКОЙ МИКОЛОГИИ
  2. I. ОСНОВЫ МЕДИЦИНСКОЙ ГЕЛЬМИНТОЛОГИИ
  3. II. ГЕНЕТИКА ОКРАСОВ И КАЧЕСТВА ШЕРСТИ РАЗЛИЧНЫХ ПОРОД СОБАК
  4. II. Клинико-физиологические основы отклоняющегося поведения.
  5. II. Продолжительные качественные нарушения сознания
  6. III. Злокачественные новообразования
  7. III. Сердечная недостаточность, понятие, формы, патофизиологические механизмы развития
  8. V. МЕЖДУНАРОДНАЯ КЛАССИФИКАЦИЯ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ
  9. V. Молекулярные основы патогенеза эндокринных опухолей
  10. V2:Анатомо-физиологические особенности зубов и слизистой оболочки полости рта. Эмбриогенез полости рта и зубов

Максимальная мощность (иногда называемая "взрывной" мощностью) является результатом оптимального сочетания силы и скорости. Мощность проявляется во многих спортивных упражнениях: в метаниях, прыжках, спринтерском беге, борьбе. Чем выше мощность развивает спортсмен, тем большую скорость он может сообщить снаряду или собственному телу, так как финальная скорость снаряда (тела) определяется силой и скоростью приложенного воздействия.

Мощность может быть увеличена за счет увеличения силы или-скорости сокращения мышц или обоих компонентов. Обычно наибольший прирост мощности достигается за счет увеличения мышечной силы.

Мышечная сила, измеряемая в условиях динамического режима работы мышц (концентрического или эксцентрического сокращения), обозначается как динамическая сила (Р). Она определяется по ускорению (а), сообщаемому массе (/л) при концентрическом сокращении мышц, или по замедлению (ускорению с обратным знаком) движения массы при эксцентрическом сокращении мышц. Такое определение основано на физическом законе, согласно которому Р - т а. При этом проявляемая мышечная сила зависит от величины перемещаемой массы: в некоторых пределах с увеличением, массы перемещаемого тела показатели силы растут; дальнейшее увеличение массы не сопровождается приростом динамической силы.

При измерении динамической силы испытуемый выполняет движение, которое требует сложной внемышечной и внутримышечной координации. Поэтому показатели динамической силы значительно различаются у разных людей и при повторных измерениях у одного и того же человека, причем больше, чем показатели изометрической (статической) силы.

Динамическая сила, измеряемая при концентрическом сокращении мышц, меньше, чем статическая сила. Конечно, такое сравнение проводится при максимальных усилиях испытуемого в обоих случаях и при одинаковом суставном угле. В режиме эксцентрических сокращений (уступающий режим) мышцы способны проявлять динамическую силу, значительно превышающую максимальную изометрическую. Чем больше скорость движения, тем больше проявляемая динамическая сила при уступающем режиме сокращения мышц.

У одних и тех же испытуемых обнаруживается умеренная корреляция между показателями статической и динамической силы (коэффициенты корреляции в пределах 0,6-0,8).

Рис. 30. Изменение зависимости "сила - скорость" (Л) и относительные изменения момента силы (Б) при разных способах тренировки (Д. Ю. Бравая и Я. М. Код): в/с - изометрическая тренировка, 40°/с и 160°/с - изокинетическая тренировка с указанной скоростью движения

Увеличение динамической силы в результате динамической тренировки может не вызывать повышения статической силы. Изометрические упражнения или не увеличивают динамической силы, или увеличивают значительно меньше, чем статическую (рис. 30). Все это указывает на чрезвычайную специфичность тренировочных эффектов: использование определенного вида упражнений (статичеcкого или динамического) вызывает наиболее значительное повышение результата именно в этом виде упражнений. Более того, наибольший прирост мышечной силы обнаруживается при той же скорости движения, при которой происходит тренировка (см. рис. 30).

Рис. 31. Изменение изометрической силы (I) и максимальной скорости этого изменения (II) в начале произвольного (вверху) и вызванного электрическим раздражением (внизу) сокращения трехглавой м. голени у спортсменов и неспортсменов (Я. М. Код и Ю. А. Коряк, 1981). Сила изометрического сокращения выражена в процентах от максимальной силы (Ро), а скорость - в процентах от максимальной силы и мс

К одной из разновидностей мышечной силы относится так называемая взрывная сила, которая характеризует способность к быстрому проявлению мышечной силы. Она в значительной мере определяет, например, высоту прыжка вверх с прямыми ногами или прыжка в длину с места, переместительную скорость на коротких отрезках бега с максимально возможной скоростью. В качестве показателей взрывной силы используются градиенты силы, т. е. скорость ее нарастания, которая определяется как отношение Максимальной проявляемой силы к времени ее достижения или как ьремя достижения какого-нибудь выбранного уровня мышечной силы (абсолютный градиент)'либо половины максимальной силы, либо какой-нибудь другой ее части (относительный градиент силы). Градиент силы выше у представителей скоростно-силовых видов спорта (спринтеров), чем у неспортсменов или спортсменов, тренирующихся на выносливость (рис. 31). Особенно значительны различия в абсолютных градиентах силы.

Показатели взрывной силы мало зависят от максимальной произвольной изометрической силы. Так, изометрические упражнения", увеличивая статическую силу, незначительно изменяют взрывную силу, определяемую по показателям градиента силы или по показателям прыгучести (прыжками вверх с прямыми ногами или прыжка с места в длину). Следовательно, физиологические механизмы, ответственные за взрывную силу, отличаются от механизмов, определяющих статическую силу. Среди координационных факторов важную роль в проявлении взрывной силы играет характер импульсации мотонейронов активных мышц - частота их импульсации. в начале разряда и синхронизация импульсации разных мотонейронов. Чем выше начальная частота импульсации мотонейронов, тем быстрее нарастает мышечная сила.

Рис. 32. Процент площади, занимаемой на поперечном срезе наружной головки четырехглавой м. бедра медленными волокнами у легкоатлетов разной специализации и неспортсменов - мужчин (А) и женщин (Б) (Д. Костилл,.1976)

В проявлении взрывной силы очень большую роль играют скоростные сократительные свойства мышц, которые в значительной мере зависят от их композиции, т. е. соотношения быстрых и медленных волокон. Быстрые волокна составляют основную массу мышечных волокон у высококвалифицированных представителей скоростно-силовых видов спорта (см. рис. 29). В процессе тренировки эти волокна подвергаются более значительной гипертрофии, чем медленные. Поэтому у спортсменов скоростно-силовых видов спорта быстрые волокна составляют основную массу мышц (или иначе занимают на поперечном срезе значительно большую площадь) по.сравнению с нетренированными людьми или представителями других видов" спорта, особенно тех, которые требуют проявления преимущественно выносливости (рис. 32).


Дата добавления: 2015-03-04 | Просмотры: 1054 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)