Состав, свойства и значение компонентов плазмы
Удельный вес плазмы 1,025-1,029 г/см3, вязкость 1,9-2,6. Плазма содержит 90-92% воды и 8-10% сухого остатка. В состав сухого остатка входят минеральные вещества (около 0,9%), в основном яорид натрия, катионы калия, магния, кальция, анионы хлора, гидрокарбонат, фосфатанионы. Кроме «го в нем имеются глюкоза, а также продукты гидролиза белков - мочевина, креатинин, аминокислоты *ГД- Они называются остаточным азотом. Содержание глюкозы в плазме 3,6-6,9 ммоль/л, остаточного ярта 14,3-28,6 ммоль/л.
Особое значение имеют белки плазмы. Их общее количество 7-8%. Белки состоят из нескольких фракций, но наибольшее значение имеют альбумины, глобулины и фибриноген. Альбуминов «держится 3,5-5%, глобулинов 2-3%, фибриногена 0,3-0,4%. При нормальном питании в организме человека ежесуточно вырабатывается около 17 г альбуминов и 5 г глобулинов.
Функции альбуминов плазмы:
1.Создают большую часть онкотического давления, обеспечивая нормальное распределение воды и ионов между кровью и тканевой жидкостью, мочеобразование.
2.Служат белковым резервом крови, который составляет 200 г белка. Он используется организмом при белковом голодании.
З.Благодаря отрицательному заряду способствуют стабилизации и препятствуют оседанию форменных элементов крови.
4.Подцерживают кислотно-щелочное равновесие, являясь буферной системой. 5. Переносят половые гормоны, желчные пигменты и ионы кальция.
Эти же функции выполняют и другие фракции белков, но в значительно меньшей мере. Им свойственны особые функции.
Глобулины включают четыре субфракции - ось а^, Р иу-глобулины. Функции глобулинов: ].а-глобулины участвуют в регуляции эритропоэза, т.к. один из них является эритропоэтином. 2.Необоходимы для свертывания крови, т.к. к ним относится один из факторов свертывания -. З.Участвуют в растворении тромба, т.к. содержат фермент фибринолитической системы плазминоген. 4.а2-альбумин церулоплазмин переносит 90% ионов меди, необходимых организму. 5.Переносят гормоны тироксин и кортизол б.р-глобулин трансферрин переносит основную массу железа У.несколько (3-глобулинов являются факторами свертывания крови.
8.у-глобулины выполняют защитную функцию, являясь иммуноглобулинами. При заболеваниях их количество в крови возрастает.
Фибриноген является растворимым предшественником белка фибрина, из которого образуется сгусток крови тромб.
Механизмы поддержания кислотно-щелочного равновесия крови.
Для организма важнейшее значение имеет поддержание постоянства реакции внутренней среды. Это необходимо для нормального протекания ферментативных процессов в клетках и внеклеточной среде, синтеза и гидролиза различных веществ, поддержания ионных градиентов в клетках, транспорта газов и т.д. Активная реакция среды определяется соотношением водородных и гидроксильных ионов. Постоянство кислотно-щелочного равновесия внутренней среды поддерживается буферными системами крови и физиологическими механизмами. Буферные системы - это комплекс слабых кислоты и основания, который способен препятствовать сдвигу реакции в ту или иную сторону.
Кровь содержит следующие буферные системы:
]. Бикарбонатная или гидрокарбонатная. Она состоит из свободной угольной кислоты и гидрокарбонатов натрия и калия (NaНСОз и КНСОз). При накоплении в крови щелочей, они взаимодействуют с угольной кислотой. Образуются гидрокарбонат и вода. Если кислотность крови возрастает, то кислоты соединяются с гидрокарбонатами. Образуются нейтральные соли и угольная кислота. В легких она распадается на углекислый газ и воду, которые выдыхаются.
2. Фосфатная буферная система Она является комплексом гидрофосфата и дигидрофосфата натрия (Na2HPO4 и NаН2РО4 Первый проявляет свойства основания, второй слабой кислоты. Кислоты образуют с гидрофосфатом натрия нейтральную соль и дигидрофосфат натрия (Na2HPO4+^CO2=NaHCO3+NaH2PO4).
3. Белковая буферная система Белки являются буфером благодаря своей амфотерности. Т.е. в зависимости от реакции среды они проявляют либо щелочные, либо кислотные свойства Щелочные свойства им придают концевые аминогруппы белков, а кислотные карбоксильные. Хотя буферная емкость белковой системы небольшая, она.играет важную роль в межклеточной жидкости.
4. Гемоглобиновая буферная система эритроцитов. Самая мощная буферная система. Состоит из восстановленного гемоглобина и калиевой соли оксигемоглобина Аминокислота гистидин, входящая в структуру гемоглобина, имеет карбоксильные и. амидные группировки. Первые обеспечивают гемоглобину свойства слабой кислоты, вторые - слабого основания. При диссоциации оксигемоглобина в капиллярах тканей на кислород и гемоглобин, последний приобретает способность связываться с катионами водорода. Они образуются в результате диссоциации, образовавшейся из углекислого газа угольной кислоты. Угольная кислота образуется из углекислого газа и воды под действием фермента карбоангидразы, имеющейся в эритроцитах (формула). Анионы угольной кислоты связываются с катионами калия, находящимися в эритроцитах и катионами натрия в плазме крови. Образуются гидрокарбонаты калия и натрия, сохраняющие буферную емкость крови. Кроме того, восстановленный гемоглобин может непосредственно связываться с углекислым газом с образованием карбгемоглобин'а. Это также препятствует сдвигу реакции крови в кислую сторону.
Физиологические механизмы поддержания кислотно-щелочного равновесия обеспечиваются легкими, почками, ЖКТ, печенью. С помощью легких из крови удаляется угольная кислота. В организме ежеминутно образуется 10 ммолъ угольной кислоты. Закисление крови не происходит потому, что из нее образуются бикарбонаты. В капиллярах легких из анионов угольной кислоты и протонов вновь образуется угольная кислота, которая под влиянием фермента карбоангидразы расщепляется на углекислый газ и воду. Они выдыхаются. Через почки из крови выделяются нелетучие органические и неорганические кислоты. Они выводятся как в свободном состоянии, так и в виде солей. В физиологических условиях почки моча имеет кислую ^реакцию (рН=5-7). Почки участвуют в регуляции кислотно-щелочного гомеостаза с помощью следующих механизмов:
1. Секреции эпителием канальцев водородных ионов, образовавшихся го угольной кислоты, в мочу.
2. Образования в клетках эпителия гидрокарбонатов, которые поступают в кровь и увеличивают ее щелочной резерв. Они образуются из угольной кислоты и катионов натрия и калия. Первые 2 процесса обусловлены наличием в этих клетках карбоангидразы.
3. Синтеза аммиака, катион которого может связываться с катионом водорода с образованием аммония.
4. Обратного всасывание в канальцах из первичной мочи в кровь гидрокарбонатов.
5. Фильтрация в мочу избытка кислых и щелочных соединений.
Значение органов пищеварения- для поддержания кислотно-щелочного равновесия небольшое. В частности, в желудке в виде соляной кислоты выделяются протоны. Поджелудочной железой и железами тонкого кишечника гидрокарбонаты. Но в то же время и протоны и гидрокарбонаты обратно всасываются в кровь. В результате реакция крови не изменяется. В печени из молочной кислоты образуется гликоген. Однако нарушение функций пищеварительного канала сопровождается сдвигом реакции крови. Так стойкое повышение кислотности желудочного сока приводит к увеличению щелочного резерва крови. Это же возникает при частой рвоте из-за потери катионов водорода и хлоридов.
Кислотно-щелочной баланс крови характеризуется несколькими показателями:
1.Актуальный рН. Это фактическая величина рН крови. В норме артериальная кровь имеет рН 7,35-7,45.
2. Парциальное напряжение СО2 (РСО2). Для артериальной крови 36-44 мм;рт.ст.
3. Стандартный бикарбонат крови (SB). Содержание бикарбонат (гидрокарбонат) анионов при стандартных условиях, т.е. нормальном насыщении гемоглобина кислородом. Величина 21,3 - 24,8 ммоль/л.
4. Актуальный бикарбонат крови (АВ). Истинная концентрация бикарбонат анионов. В норме практически не отличается от стандартного, но возможны физиологические колебания от 19 до 25 ммоль/л. Раньше этот показатель называли щелочным резервом. Он определяет способность крови нейтрализовать кислоты.
5. Буферные основания (ВВ). Общая сумма всех анионов, обладающих буферными свойствами, в стандартных условиях. 40-60 ммоль/л.
При определенных условиях реакция крови может изменяться. Сдвиг реакции крови в кислую сторону, называется ацидозом, в щелочную, алкалозом. Эти изменения рН могут быть дыхательными и недыхательными или метаболическими. Дыхательные изменения реакции крови обусловлены изменениями содержания углекислого газа. Недыхательные - бикарбонат анионов. В здоровом организме, например при пониженном атмосферном давлении или усиленном дыхании (гипервснтиляции) снижается концентрация CO2 в крови. Возникает дыхательный алкалоз. Недыхательный развивается при длительном приеме растительной пищи или воды, содержащей гидрокарбонаты. При задержке дыхания развивается дыхательный, а тяжелой физической работе, недыхательный ацидоз. Изменения рН могут быть компенсированными и некомпенсированными. Если реакция крови не изменяется, то это компенсированные алкалоз и ацидоз. Сдвиги компенсируются буферными системами, в первую очередь бикарбонатной. Поэтому они наблюдаются в здоровом организме. При недостатке или избытке буферных компонентов имеет место частично компенсированные ацидоз и алкалоз, но рН не выходит за пределы нормы. Если же реакция крови меньше 7,29 или больше 7,56 наблюдается некомпенсированные ацидоз и алкалоз. Самым грозным состоянием в клинике является некомпенсированный метаболический ацидоз. Он возникает вследствие нарушений кровообращения и гипоксии тканей, а как следствие, усиленного анаэробного расщепления жиров и белков и т.д. При рН ниже 7,0 происходят глубокие изменения функций ЦНС (кома), возникает фибрилляция сердца, падает артериального давления, угнетается дыхание и может наступить смерть. Метаболический ацидоз устраняется коррекцией электролитного состава, искусственной вентиляцией и т.д.
Строение и функции эритроцитов. Гемолиз.
Эритроциты (Э)- это высокоспециализированные безъядерные клетки крови. Ядро у них утрачивается в процессе созревания. Эритроциты имеют форму двояковогнутого диска В среднем их диаметр около 7,5 мкм, а толщина на периферии 2,5 мкм. Благодаря такой форме увеличивается поверхность эритроцитов для диффузии газов. Кроме того, это возрастает их пластичность. За счет высокой пластичности, они деформируются и легко проходят по капиллярам. У старых и патологических эритро1;итов пластичность низкая. Поэтому они задерживаются в капиллярах ретикулярной ткани селезенки и разрушаются там. Мембрана эритроцитов и отсутствие ядра обеспечивают их главную функцию - перенос кислорода и участие в переносе углекислого газа. Мембрана эритроцитов непроницаема для катионов, кроме калия, а ее проницаемость для анионов хлора, гидрокарбонат анионов и гидроксил анионов в миллион раз больше. Кроме того она хорошо пропускает молекулы кислорода и углекислого газа. В мембране содержится до 52% белка. В частности, гликопротеины определяют групповую принадлежность крови и_ обеспечивают ее отрицательный заряд, В нее встроена Na/K-АТФаза, удаляющая из цитоплазмы натрий и закачивающая ионы калия. Основную массу эритроцитов составляет хемопротеин гемоглобин. Кроме того в цитоплазме содержатся ферменты карбоангидраза, фосфатазы, холинэстераза и другие ферменты.
Функции эритроцитов: 1. Перенос кислорода от легких к тканям.
2. Участие в транспорте СОа от тканей к легким.
3. Транспорт воды от тканей к легким, где она выделяется в виде пара
4. Участвуют в свертывании крови, выделяя эритроцитарные факторы свертывания.
5. Переносят аминокислоты на своей поверхности.
6. Участвуют в -регуляции вязкости крови, вследствие пластичности. В результате их способности к деформации, вязкость крови в мелких сосудах меньше, чем крупных.
В одном микролитре крови мужчин содержится 4,5-5,0 млн. эритроцитов (4,5-5,0 * 1012 л). Женщин -3,7-4,7 млн. (3,7-4,7 * 10 л). Подсчет количества эритроцитов производится в камере Горяева Дня этого кровь в специальном капилляре меланжере (смесителе) для эритроцитов смешивают с 3% раствором хлорида натрия в соотношении 1:100 или 1:200. Затем капелька этой смеси помещается в счетную камеру. Она создается средним выступом камеры и покровным стеклом. Высота камеры 0,1 мм. На среднем выступе нанесена сетка, образующая большие квадраты. Часть этих квадратов разделена на 16 маленьких (табл.). Каждая сторона малого квадрата имеет величину 0,05 мм. Следовательно, объем смеси над малым квадратом будет составлять 1/10 мм * 1/20 мм * 1/20 мм = 1/4000 мм3.
После заполнения камеры, под микроскопом считают количество эритроцитов в 5-ти тех больших квадратах, которые разделены на маленькие, Т.е. в 80 маленьких. Затем рассчитывают количество эритроцитов в одном микролитре крови по формуле:
Где а - общее количество эритроцитов, полученное при подсчете б - число малых квадратов в которых производился подсчет (80) в -разведение крови (1:1 00, 1:200). 4000 - величина обратная объему жидкости на малым квадратом.
Дата добавления: 2015-05-19 | Просмотры: 968 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 |
|