Каждое экстрафузальное МВ имеет прямую двигательную иннервацию — нервно-мышечные синапсы, образованные терминальными ветвлениями аксонов a‑мотонейронов и специализированными участками плазмолеммы мышечного волокна (концевая пластинка, постсинаптическая мембрана). Экстрафузальные МВ входят в состав нейромоторных (двигательных) единиц и обеспечивают сократительную функцию мышц. Интрафузальные МВ образуют нервно-мышечные синапсы с эфферентными волокнами g‑мотонейронов.
· Двигательная единица (рис. 7–6) включает один мотонейрон и группу иннервируемых им экстрафузальных МВ. Количество и размеры двигательных единиц в различных мышцах значительно варьируют. Поскольку при сокращении фазные МВ подчиняются закону «всё или ничего», то сила, развиваемая мышцей, зависит от количества активируемых (т.е. участвующих в сокращении МВ) двигательных единиц. Каждая двигательная единица образована только быстросокращающимися или только медленносокращающимися МВ (см. ниже).
Рис. 7–6. Двигательная единица
· Полинейронная иннервация. Формирование двигательных единиц происходит в постнатальном периоде, а до рождения каждое МВ иннервируется несколькими мотонейронами. Аналогичная ситуация возникает при денервации мышцы (например, при повреждении нерва) с последующей реиннервацией МВ. Понятно, что в этих ситуациях страдает эффективность сократительной функции мышцы.
· Нервно - мышечный синапс. Физиология нервно-мышечных синапсов рассмотрена в главах 4 (см. рис. 4–8) и 6 (см. рис. 6–2, 6–3).
Как и любой синапс, нервно-мышечное соединение состоит из трех частей: пресинаптической области, постсинаптической области и синаптической щели.
à Пресинаптическая область. Двигательная нервная терминаль нервно-мышечного синапса снаружи покрыта шванновской клеткой, имеет диаметр 1–1,5 мкм и образует пресинаптическую область нервно-мышечного синапса. В пресинаптической области в большом количестве присутствуют синаптические пузырьки, заполненные ацетилхолином (5–15 тыс. молекул в одном пузырьке) и имеющие диаметр порядка 50 нм.
à Постсинаптическая область. На постсинаптической мембране — специализированной части плазмолеммы МВ — имеются многочисленные инвагинации, от которых на глубину 0,5–1,0 мкм отходят постсинаптические складки, чем существенно увеличивается площадь мембраны. В постсинаптическую мембрану встроены н‑холинорецепторы, их концентрация достигает 20–30 тысяч на 1 мкм2.
Рис. 7–7. Никотиновый холинорецептор постсинаптической мембраны. А — рецептор не активирован, ионный канал закрыт. Б — после связывания рецептора с ацетилхолином канал кратковременно открывается.
Ä Постсинаптические н‑холинорецепторы (рис. 7–7) Диаметр открытого канала в составе рецептора равен 0,65 нм, что вполне достаточно для свободного прохождения всех необходимых катионов: Na+, K+, Ca2+. Отрицательные ионы, такие как Cl–, не проходят через канал вследствие сильного отрицательного заряда в устье канала. Реально через канал проходят преимущественно ионы Na+в силу следующих обстоятельств:
Ú в среде, окружающей рецептор ацетилхолина, в достаточно больших концентрациях имеется лишь два положительно заряженных иона: во внеклеточной жидкости Na+ и во внутриклеточной жидкости K+;
Ú сильный отрицательный заряд внутренней поверхности мышечной мембраны (от –80 до –90 мВ) притягивает положительно заряженные ионы натрия внутрь МВ, одновременно предотвращая попытки ионов калия двигаться наружу.
Ä Внесинаптические холинорецепторы. Холинорецепторы присутствуют также в мембране мышечного волокна вне синапса, но здесь их концентрация на порядок величины меньше, чем в постсинаптической мембране.
à Синаптическая щель. Через синаптическую щель проходит синаптическая базальная мембрана. Она удерживает в области синапса терминаль аксона, контролирует расположение холинорецепторов в виде скоплений в постсинаптической мембране. В синаптической щели также находится фермент ацетилхолинэстераза, расщепляющий ацетилхолин на холин и уксусную кислоту.
à Этапы нервно-мышечной передачи. Нервно-мышечная передача возбуждения состоит из нескольких этапов.
Ú ПД по аксону достигает области двигательного нервного окончания.
Ú Деполяризация мембраны нервного окончания приводит к открытию потенциалозависимых Са2+‑каналов и входу Са2+ в двигательное нервное окончание.
Ú Повышение концентрации Са2+ приводит к запуску экзоцитоза квантов ацетилхолина из синаптических пузырьков.
Ú Ацетилхолин попадает в синаптическую щель, где путём диффузии достигает рецепторов на постсинаптической мембране. В нервно-мышечном синапсе в ответ на один ПД выделяется около 100–150 квантов ацетилхолина.
Ú Активация н‑холинорецепторов постсинаптической мембраны. При открытии каналов н‑холинорецепторов возникает входящий Na–ток, что приводит к деполяризации постсинаптической мембраны. Появляется потенциал концевой пластинки, который при достижении критического уровня деполяризации вызывает ПД в мышечном волокне.
Ú Ацетилхолинэстераза расщепляет ацетилхолин и действие выделившийся порции нейромедиатора на постсинаптическую мембрану прекращается.
à Надежность синаптической передачи. В физиологических условиях каждый нервный импульс, поступающий в нервно-мышечное соединение, вызывает возникновение потенциала концевой пластинки, амплитуда которого в три раза больше необходимой для возникновения ПД. Появление такого потенциала связано с избыточностью выделения медиатора. Под избыточностью подразумевается выделение в синаптическую щель значительно большего количества ацетилхолина, чем требуется для запуска ПД на постсинаптической мембране. Этим гарантируется, что каждый ПД мотонейрона вызовет реакцию в иннервируемом им МВ.
à Вещества, активирующие передачу возбуждения
Ú Холиномиметики. Метахолин, карбахол и никотин оказывают на мышцу тот же эффект, что и ацетилхолин. Различие заключается в том, что эти вещества не разрушаются ацетилхолинэстеразой или разрушаются более медленно, в течение многих минут и даже часов.
Ú Антихолинэстеразные соединения. Неостигмин, физостигмин и диизопропилфлуорофосфат инактивируют фермент таким образом, что имеющаяся в синапсе ацетилхолинэстераза теряет способность гидролизовать ацетилхолин, выделяющийся в концевой двигательной пластинке. В результате происходит накопление ацетилхолина, что в ряде случаев может вызывать мышечный спазм. Это может приводить к смертельным исходам при спазме гортани у курильщиков. Неостигмин и физостигмин инактивируют ацетилхолинэстеразу в течение нескольких часов, после чего их действие проходит, и синаптическая ацетилхолинэстераза восстанавливает свою активность. Диизопропилфлуорофосфат, являющийся нервно-паралитическим газом, блокирует ацетилхолинэстеразу на недели, что делает это вещество смертельно опасным.
à Вещества, блокирующие передачу возбуждения
Ú Миорелаксанты периферического действия (кураре и курареподобные препараты) широко применяются в анестезиологии. Тубокурарин препятствует деполяризующему действию ацетилхолина. Дитилин приводит к миопаралитическому эффекту, вызывая стойкую деполяризацию постсинаптической мембраны.
Ú Ботулотоксин и столбнячный токсин блокируют секрецию медиатора из нервных терминалей.
Ú b- и g- Бунгаротоксины блокируют холинорецепторы.
à Нарушения нервно-мышечной передачи. Миастения тяжёлая псевдопаралитическая (myasthenia gravis) — аутоиммунное заболевание, при котором образуются АТ к н‑холинорецепторам. Циркулирующие в крови АТ связываются с н‑холинорецепторами постсинаптической мембраны МВ, препятствуют взаимодействию холинорецепторов с ацетилхолином и угнетают их функцию, что приводит к нарушению синаптической передачи и развитию мышечной слабости. Ряд форм миастений вызывает появление АТ к кальциевым каналам нервных окончаний в нервно-мышечном соединении.
à Денервация мышцы. При двигательной денервации происходит значительное увеличение чувствительности мышечных волокон к эффектам ацетилхолина вследствие увеличенного синтеза рецепторов ацетилхолина и их встраивания в плазмолемму по всей поверхности мышечного волокна.
· Потенциал действия мышечного волокна. Природа и механизм возникновения ПД рассмотрены в главе 5. ПД МВ длится 1–5 мс, скорость его проведения по сарколемме, включая T-трубочки, составляет 3–5 м/с.