АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Строение и физиология мышцы

Прочитайте:
  1. A- Мышцы языка
  2. A- Состояние двубрюшной мышцы
  3. I. Нейрофизиология
  4. I. Строение глаза
  5. I. Физиология щитовидной железы плода
  6. II. Жевательные мышцы
  7. II.Наружные мышцы таза
  8. III) Строение зубов
  9. IV) Строение миокарда
  10. IV. мышцы надгортанника

Мышца как орган состоит из мышечных волокон, волокнистой соединительной ткани, сосудов, нервов. Мышца – это анатомическое образование, основным и функционально ведущим структурным компонентом которого является мышечная ткань.

Волокнистая соединительная ткань образует прослойки в мышце: эндомизий, перимизий, эпимизий, а также сухожилия.

Эндомизий окружает каждое мышечное волокно, состоит из рыхлой волокнистой соединительной ткани и содержит кровеносные и лимфатические сосуды, в основном капилляры, посредством которых обеспечивается трофика волокна.

Перимизий окружает несколько мышечных волокон, собранных в пучки.

Эпимизий (или фасция) окружает всю мышцу, способствует функционированию мышцы как органа.

Гистогенез скелетной поперечно-полосатой мышечной ткани

Из миотомов мезодермы в определенные участки мезенхимы выселяются малодифференцированные клетки – миобласты. В области контактов миобластов цитолемма исчезает, и образуется симпластическое образование – миотрубка, в которой ядра в виде цепочки располагаются в середине, а по периферии из миофиламентов начинают дифференцироваться миофибриллы.

К миотрубке подрастают нервные волокна, образуя двигательные нервные окончания. Под влиянием эфферентной нервной иннервации начинается перестройка мышечной трубки в мышечное волокно: ядра перемещаются на периферию симпласта к плазмолемме, а миофибриллы занимают центральную часть. Из складок эндоплазматической сети развивается саркоплазматическая сеть, окружающая каждую миофибриллу на всем ее протяжении. Плазмолемма миосимпласта образует глубокие трубчатые выпячивания – Т-канальца. За счет деятельности зернистой эндоплазматической сети вначале миобластов, а затем и мышечных труб синтезируются и выделяются с помощью пластинчатого комплекса белки и полисахариды, из которых формируется базальная пластинка мышечного волокна.

При формировании миотрубки, а затем и дифференцировки мышечного волокна часть миобластов не входит в состав симпласта, а прилежит к нему, располагаясь под базальной пластинкой. Эти клетки носят название миосателлитов и играют важную роль в процессе физиологической и репаративной регенерации. Установлено, что закладка поперечно-полосатой скелетной мускулатуры происходит только в эмбриональном периоде. В постнатальном периоде осуществляется их дальнейшая дифференцировка и гипертрофия, но количество мышечных волокон даже в условиях интенсивных тренировок не увеличивается.

Регенерация скелетной мышечной ткани

В мышечной, как и в других тканях, различают два вида регенерации физиологическую и репаративную. Физиологическая регенерация проявляется в форме гипертрофии мышечных волокон.

Это выражается в увеличении их толщины и длины, нарастании числа органелл, главным образом миофибрилл, числа ядер, что проявляется усилением функциональной способности мышечного волокна. Радиоизотопными методами установлено, что увеличение содержания ядер в мышечных волокон достигается путем деления клеток миосателлитов и последующего вхождения в миосимпласт дочерних клеток.

Увеличение числа миофибрилл осуществляется с помощью синтеза актиновых и миозиновых белков свободными рибосомами и последующей сборки этих белков в актиновые и миозиновые миофиламенты параллельно с соответствующими филаментами саркомеров. В результате этого вначале происходит утолщение миофибрилл, а затем их расщепление и образование дочерних. Возможно образование новых актиновых и миозиновых миофиламентов не параллельно, а встык уже существующим, чем достигается их удлинение.

Саркоплазматическая сеть и Т-канальца в гипертрофирующемся мышечном волокне образуются за счет разрастания предыдущих элементов. При определенных видах мышечной тренировки может формироваться преимущественно красный тип мышечных волокон (у стайеров в легкой атлетике) или белый тип.

Возрастная гипертрофия мышечных волокон интенсивно проявляется с началом двигательной активности организма (1 – 2 года), что обусловлено прежде всего усилением нервной стимуляции. В старческом возраст, а также в условиях незначительной мышечной нагрузки, наступает атрофия специальных и общих органелл, истончение мышечных волокон и снижение их работоспособности.

Репаративная регенерация развивается после повреждения мышечных волокон.

При этом способе регенерация зависит от величины дефекта. При значительном повреждении на протяжении мышечного волокна миосателлиты в области повреждения и в прилегающих участках растормаживаются, усиленно пролиферируют, а затем мигрируют в область дефекта мышечного волокна, где встраиваются в цепочки, формируя микротрубочку.

Последующая дифференцировка микротрубочки приводит к восполнению дефекта и восстановлению целостности мышечного волокна. В условиях небольшого дефекта мышечного волокна на его концах за счет регенерации внутриклеточных органелл, образуются мышечные почки, которые растут друг навстречу другу, а затем сливаются, приводя к закрытию дефекта.

Репаративная регенерация и восстановление целостности мышечных волокон могут осуществляться только при определенных условиях: если сохранилась двигательная иннервация мышечных волокон и если в область повреждения не попали элементы соединительной ткани (фибробласты). В противном случае на месте дефекта образуется соединительно-тканный рубец.

В настоящее время доказана возможность аутотрансплантации мышечной ткани, в том числе и целых мышц при соблюдении следующих условий:

1) механического измельчения мышечной ткани трансплантанта с целью растормаживания клеток-сателлитов для последующей их пролиферации;

2) помещения измельченной ткани в фасциальное ложе;

3) подшивания двигательного нервного волокна к измельченному трансплантанту;

4) наличия сократительных движений мышц-антагонистов и синергистов.

Иннервация скелетных мышц

Скелетные мышцы получают двигательную, чувствительную и трофическую (вегетативную) иннервацию. Двигательную (эфферентную) иннервацию скелетные мышцы туловища и конечностей получают от мотонейронов передних рогов спинного мозга, а мышцы лица и головы – от двигательных нейронов определенных черепных нервов.

При этом к каждому мышечному волокну подходит либо сам аксон мотонейрона, либо его ответвление. В мышцах, обеспечивающих координированные движения (мышцы кистей, предплечья, шеи) каждое мышечное волокно иннервируется одним мотонейроном, чем достигается большая точность движений. В мышцах, которые преимущественно обеспечивают поддержание позы, десятки и даже сотни мышечных волокон получают двигательную иннервацию от одного мотонейрона посредством разветвления его аксона.

Двигательное нервное волокно, подойдя к мышечному волокну, проникает под эндомизий и базальную пластинку и распадается на терминали, которые вместе с прилежащим специфическим участком миосимпласта образуют аксономышечный синапс (или моторную бляшку).

Под влиянием нервного импульса волна деполяризации распространяется далее по Т-канальцам и в области триад передается на терминальные цистерны саркоплазматической сети, обуславливая выход ионов кальция и начало процесса сокращения мышечного волокна.

Чувствительная иннервация скелетных мышц осуществляется псевдоуниполярными нейронами спинальных ганглиев посредством разнообразных рецепторных окончаний дендритов этих клеток. Рецепторные окончания скелетных мышц можно разделить на две группы:

1) специфические рецепторные приборы, характерные только для скелетной мускулатуры – мышечные веретена и сухожильный комплекс Гольджи;

2) неспецифические рецепторные окончания кустиковидной или древовидной формы, распределяющиеся в рыхлой соединительной ткани эндо-, пери– и эпиневрия.

Мышечные веретена – это сложно устроенные инкапсулированные образования. В каждой мышце содержится от нескольких до сотен мышечных веретен. Каждое мышечное веретено содержит не только нервные элементы, но также 10 – 12 специфических мышечных волокон – интрафузальных, окруженных капсулой. Эти волокна располагаются параллельно сократительным мышечным волокнам (экстрафузально) и получают не только чувствительную, но и специальную двигательную иннервацию. Мышечные веретена воспринимают раздражения как при растяжении данной мышцы, вызванном сокращением мышц-антагонистов, так и при ее сокращении и тем самым регулируют степень сокращения и расслабления.

Сухожильные органы представляют собой специализированные инкапсулированные рецепторы, включающие в свою структуру несколько сухожильных волокон, окруженных капсулой, среди которых распределяются терминальные ветвления дендрита псевдоуниполярного нейрона. При сокращении мышцы сухожильные волокна сближаются и сдавливают нервные окончания. Сухожильные органы воспринимают только степень сокращения данной мышцы. Посредством мышечных веретен и сухожильных органов при участии спинальных центров обеспечивается автоматизм движения, например, при ходьбе.

Трофическая иннервация скелетных мышц осуществляется вегетативной нервной системой – ее вегетативной частью и в основном осуществляется опосредованно через иннервацию сосудов.

Кровоснабжение

Скелетные мышцы богато кровоснабжаются. В рыхлой соединительной ткани (перимизии) в большом количестве содержатся артерии и вены, артериолы, венулы и артериоловенулярные анастомозы.

В эндомизии располагаются капилляры, преимущественно узкие (4,5 – 7 мкм), которые и обеспечивают трофику нервного волокна. Мышечное волокно вместе с окружающими его капиллярами и двигательными окончаниями составляют мион. В мышцах содержится большое количество артериовенулярных анастомозов, обеспечивающих адекватное кровоснабжение при различной мышечной активности.


Дата добавления: 2015-05-19 | Просмотры: 1036 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.011 сек.)