АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Поперечно-полосатая скелетная мышечная ткань

Прочитайте:
  1. I. Формирующие костную ткань
  2. II) Подмышечная ямка
  3. II. Мышечная оболочка-
  4. II. Мышечная оболочка-
  5. II. Формирующие хрящевую ткань.
  6. V2: Нервная ткань
  7. V2: Подмышечная артерия. Артерии верхней конечности. Брюшная аорта.
  8. Артерия. 2.Вена. 3. Нервы. 4. Рыхлая волокнистая неоформленная соединительная ткань
  9. Внеаудиторная обязательная самостоятельная работа студентов к Теме № : « Эпителиальная ткань. Железы»
  10. Внутримышечная вакцинация.

Как уже отмечалось, структурно-функциональной единицей этой ткани является мышечное волокно. Оно представляет собой вытянутое цилиндрическое образование с заостренными концами длиной от 1 до 40 мм (а по некоторым данным – до 120 мм), диаметром 0,1 мм. Мышечное волокно окружено оболочкой сарколеммой, в которой под электронным микроскопом отчетливо выделяются два листка: внутренний листок является типичной плазмолеммой, а наружный представляет собой тонкую соединительно-тканную пластинку (базальную пластинку).

Основным структурным компонентом мышечного волокна является миосимпласт. Таким образом, мышечное волокно является комплексным образованием и состоит из следующих основных структурных компонентов:

1) миосимпласта;

2) клеток-миосателлитов;

3) базальной пластинки.

Базальная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительно-тканные элементы мышцы.

Клетки-миосателлиты являются ростковыми элементами мышечных волокон, играющими важную роль в процессах физиологической и репаративной регенерации.

Миосимпласт является основным структурным компонентом мышечного волокна как по объему, так и по выполняемым функциям. Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток – миобластов.

Миосимпласт можно рассматривать как вытянутую гигантскую многоядерную клетку, состоящую из большого числа ядер, цитоплазмы (саркоплазмы), плазмолеммы, включений, общих и специализированных органелл.

В миосимпласте до 10 тыс. продольно вытянутых светлых ядер, располагающихся на периферии под плазмолеммой. Вблизи ядер локализуются фрагменты слабо выраженной зернистой эндоплазматической сети, пластинчатого комплекса Гольджи и небольшое количество митохондрий. Центриоли в симпласте отсутствуют. В саркоплазме имеются включения гликогена и миоглобина.

Отличительной особенностью миосимпласта является также наличие в нем:

1) миофибрилл;

2) саркоплазматической сети;

3) канальцев Т-системы.

Миофибриллы – сократительные элементы миосимпласта локализуются в центральной части саркоплазмы миосимпласта.

Они объединяются в пучки, между которыми располагаются прослойки саркоплазмы. Между миофибриллами локализуется большое количество митохондрий (сакросом). Каждая миофибрилла простирается продольно на протяжении всего миосимпласта и своими свободными концами прикрепляется к его плазмолемме у конических концов. Диаметр миофибриллы составляет 0,2 – 0,5 мкм.

По своему строению миофибриллы неоднородны по протяжению, подразделяются на темные (анизотропные), или А-диски, и светлые (изотропные), или I-диски. Темные и светлые диски всех миофибрилл располагаются на одном уровне и обусловливают поперечную исчерченность всего мышечного волокна. Диски в свою очередь, состоят из более тонких волоконцев – протофибрилл, или миофиламентов. Темные диски состоят из миозина, светлые – из актина.

Посередине I-диска поперечно актиновым микрофиламентам, проходит темная полоска – телофрагма (или Z-линия), посередине А-диска проходит менее выраженная мезофрагма, (или М-линия).

Актиновые миофиламенты посредине I-диска скрепляются белками, составляющими Z-линию, а свободными концами частично входят в А-диск между толстыми миофиламентами.

При этом вокруг одного миозинового филамента располагаются шесть актиновых. При частичном сокращении миофибриллы актиновые филаменты как бы втягиваются в А-диск, и в нем образуется светлая зона (или Н-полоска), ограниченная свободными концами микрофиламентов. Ширина Н-полоски зависит от степени сокращения миофибриллы.

Участок миофибриллы, расположенный между двумя Z-полосками, носит название саркомера и является структурно-функциональной единицей миофибриллы. Саркомер включает в себя А-диск и расположенные по сторонам от него две половины I-диска. Следовательно, каждая миофибрилла представляет собой совокупность саркомеров. Именно в саркомере осуществляются процессы сокращения. Следует отметить, что конечные саркомеры каждой миофибриллы прикрепляются к плазмолемме миосимпласта при помощи актиновых миофиламентов.

Структурные элементы саркомера в расслабленном состоянии можно выразить формулой:

Z + 1/2I = 1/2А + Ь + 1/2А + 1/2I + Z.

Процесс сокращения осуществляется при взаимодействии актиновых и миозиновых филаментов с образованием между ними актомиозиновых «мостиков», посредством которых происходит втягивание актиновых филаментов в А-диск и укорочение саркомера.

Для развития этого процесса необходимы три условия:

1) наличие энергии в форме АТФ;

2) наличие ионов кальция;

3) наличие биопотенциала.

АТФ образуется в саркосомах (митохондриях), в большом количестве локализованных между миофибриллами. Выполнение второго и третьего условия осуществляется при помощи специальных органелл мышечной ткани – саркоплазматической сети (аналога эндоплазматической сети обычных клеток) и системы Т-канальцев.

Саркоплазматическая сеть представляет собой видоизмененную гладкую эндоплазматическую сеть и состоит из расширенных полостей и анастомозирующих канальцев, окружающих миофибриллы.

При этом саркоплазматическая сеть подразделяется на фрагменты, окружающие отдельные саркомеры. Каждый фрагмент состоит из двух терминальных цистерн, соединенных полыми анастомозирующими канальцами – L-канальцами. При этом терминальные цистерны охватывают саркомер в области I-диска, а канальцы – в области А-диска. В терминальных цистернах и канальцах содержатся ионы кальция, которые при поступлении нервного импульса и достижении волны деполяризации мембран саркоплазматической сети выходят из цистерн и канальцев и распределяются между актиновыми и миозиновыми микрофиламентами, инициируя их взаимодействие.

После прекращения волны деполяризации ионы кальция устремляются обратно в терминальные цистерны и канальца.

Таким образом, саркоплазматическая сеть является не только резервуаром для ионов кальция, но и играет роль кальциевого насоса.

Волна деполяризации передается на саркоплазматическую сеть от нервного окончания вначале по плазмолемме, а затем по Т-канальцам, которые не являются самостоятельными структурными элементами. Они представляют собой трубчатые впячивания плазмолеммы в саркоплазму. Проникая вглубь, Т-канальцы разветвляются и охватывают каждую миофибриллу в пределах одного пучка строго на определенном уровне, обычно на уровне Z-полоски или несколько медиальнее – в области соединения актиновых и миозиновых филаментов. Следовательно, к каждому саркомеру подходят и окружают его два Т-канальца. По сторонам от каждого Т-канальца располагаются две терминальные цистерны саркоплазматической сети соседних саркомеров, которые вместе с Т-канальцами составляют триаду. Между стенкой Т-канальца и стенками терминальных цистерн имеются контакты, через которые волна деполяризации передается на мембраны цистерн и обусловливает выход из них ионов кальция и начало сокращения.

Таким образом, функциональная роль Т-канальцев заключается в передаче возбуждения с плазмолеммы на саркоплазматическую сеть.

Для взаимодействия актиновых и миозиновых филаментов и последующего сокращения, кроме ионов кальция, необходима также энергия в виде АТФ, которая вырабатывается в саркосомах, в большом количестве располагающихся между миофибриллами.

Под влиянием ионов кальция стимулируется АТФ-азная активность миозина, что приводит к расщеплению АТФ с образованием АДФ и выделением энергии. Благодаря выделившейся энергии устанавливаются «мостики» между головками белка миозина и определенными точками на белке актине, и за счет укорочения этих «мостиков» происходит подтягивание актиновых филаментов между миозиновыми.

Затем эти связи распадаются, с использованием энергии АТФ и головки миозина образуются новые контакты с другими точками на актиновом филаменте, но расположенными дистальнее предыдущих. Так происходит постепенное втягивание актиновых филаментов между миозиновыми и укорочение саркомера. Степень этого сокращения зависит от концентрации свободных ионов кальция вблизи миофиламентов и от содержания АТФ.

При полном сокращении саркомера актиновые филаменты достигают М-полоски саркомера. При этом исчезают Н-полоска и I-диски, а формула саркомера может быть выражена следующим образом:

Z + 1/2IA + M + 1/2AI + Z.

При частичном сокращении формула саркомера будет выглядеть так:

Z + 1/nI + 1/nIA + 1/2H + M + 1/2H + 1/nAI + 1/nI + Z.

Одновременное и содружественное сокращение всех саркомеров каждой миофибриллы приводит к сокращению всего мышечного волокна. Крайние саркомеры каждой миофибриллы прикрепляются актиновыми миофиламентами к плазмолемме миосимпласта, которая на концах мышечного волокна имеет складчатый характер. При этом на концах мышечного волокна базальная пластинка не заходит в складки плазмолеммы. Ее прободают тонкие коллагеновые и ретикулярные волокна, проникают в глубь складок плазмолеммы и прикрепляются в тех ее местах, к которым с внутренней стороны прикрепляются актиновые филаменты дистальных саркомеров.

Благодаря этому создается прочная связь миосимпласта с волокнистыми структурами эндомизия. Коллагеновые и ретикулярные волокна концевых отделов мышечных волокон вместе с волокнистыми структурами эндомизия и перимизия в совокупности образуют сухожилия мышц, которые прикрепляются к определенным точкам скелета или вплетаются в сетчатый слой дермы кожи в области лица. Благодаря сокращению мышц происходит перемещение частей или всего организма, а также изменение рельефа лица.

Не все мышечные волокна одинаковы по своему строению. Различают два основных типа мышечных волокон, между которыми имеется промежуточные, отличающиеся между собой прежде всего особенностями обменных процессов и функциональными свойствами и в меньшей степени – структурными особенностями.

Волокна I типа – красные мышечные волокна, характеризуются прежде всего высоким содержанием в саркоплазме миоглобина (что придает им красный цвет), большим количеством саркосом, высокой активностью в них фермента сукцинатдегидрогеназы, высокой активностью АТФ-азы медленного действия. Эти волокна обладают способностью медленного, но длительного тонического сокращения и малой утомляемостью.

Волокна II типа – белые мышечные волокна, характеризуются незначительным содержанием миоглобина, но высоким содержанием гликогена, высокой активностью фосфорилазы и АТФ-азы быстрого типа. Функционально волокна данного типа характеризуются способностью более быстрого, сильного, но менее продолжительного сокращения.

Между двумя крайними типами мышечных волокон находятся промежуточные, характеризующиеся различным сочетанием названных включений и разной активностью перечисленных ферментов.

Любая мышца содержит все типы мышечных волокон в различном их количественном соотношении. В мышцах, обеспечивающих поддержание позы, преобладают красные мышечные волокна, в мышцах, обеспечивающих движение пальцев и кистей, преобладают красные и переходные волокна. Характер мышечного волокна может меняться в зависимости от функциональной нагрузки и тренировки. Установлено, что биохимические, структурные и функциональные особенности мышечного волокна зависят от иннервации.

Перекрестная пересадка эфферентных нервных волокон и их окончаний с красного волокна на белое (и наоборот) приводит к изменению обмена, а также структурных и функциональных особенностей в этих волокнах на противоположный тип.

 


Дата добавления: 2015-05-19 | Просмотры: 984 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.009 сек.)