АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Устройство микроскопа. Микроскоп – это оптический прибор, предназначенный для исследования увеличенных изображений микрообъектов

Прочитайте:
  1. II. Знакомство с устройством отделения новорожденных, контингентом детей.
  2. III. Увеличение микроскопа.
  3. ВНУТРЕННЕЕ УСТРОЙСТВО ГЛАЗА
  4. Внутреннее устройство Движения, структура Движения
  5. вопрос Характеристики микроскопа
  6. Глава 1. Теория микроскопа.
  7. Из истории микроскопа
  8. ИССЛЕДОВАНИЕ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ МИКРОСКОПА МЕТОДОМ АББЕ. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МИКРОСКОПА. ИСМЕРЕНИЕ ЛИНЕЙНЫХ РАЗМЕРОВ ОБЪЕКТОВ ПРИ ПОМОЩИ МИКРОСКОПА.
  9. История микроскопа
  10. История появления первого микроскопа

Микроскоп – это оптический прибор, предназначенный для исследования увеличенных изображений микрообъектов, которые невидны невооруженным глазом.

 

Основными частями светового микроскопа (рис. 1) являются объектив и окуляр, заключенные в цилиндрический корпус – тубус. Большинство моделей, предназначенных для биологических исследований, имеют в комплекте три объектива с разными фокусными расстояниями и поворотный механизм, предназначенный для их быстрой смены – турель, часто называемую револьверной головкой. Тубус располагается на верхней части массивного штатива, включающего тубусодержатель. Чуть ниже объектива (или турели с несколькими объективами) находится предметный столик, на который устанавливаются предметные стекла с исследуемыми образцами. Резкость регулируется с помощью винта грубой и точной настройки, который позволяет изменять положение предметного столика относительно объектива.Рис. 1

1. Окуляр

2. Тубус

3. Держатель

4. Винт грубой фокусировки

5. Винт точной (микрометренной)

фокусировки

6. Револьверная головка

7. Объектив

8. Предметный столик

 

Для того чтобы исследуемый образец имел достаточную для комфортного наблюдения яркость, микроскопы снабжаются еще двумя оптическими блоками (рис. 2) – осветителем и конденсором. Осветитель создает поток света, освещающий исследуемый препарат. В классических световых микроскопах конструкция осветителя (встроенного или внешнего) предполагает низковольтную лампу с толстой нитью накала, собирающую линзу и диафрагму, изменяющую диаметр светового пятна на образце. Конденсор, представляющий собой собирающую линзу, предназначен для фокусировки лучей осветителя на образце. Конденсор также имеет ирисовую диафрагму (полевую и апертурную), с помощью которой регулируется интенсивность освещения.

 

При работе с пропускающими свет объектами (жидкостями, тонкими срезами растений и т. п.), их освещают проходящим светом – осветитель и конденсор располагаются под предметным столиком. Непрозрачные же образцы нужно освещать спереди. Для этого осветитель располагают над предметным столиком, и его лучи с помощью полупрозрачного зеркала направляются на объект через объектив.

 

Осветитель может быть пассивным, активным (лампа) или состоять из обоих элементов. Самые простые микроскопы не имеют ламп для подсветки образцов. Под столиком у них располагается двустороннее зеркало, у которого одна сторона плоская, а другая – вогнутая. При дневном освещении, если микроскоп стоит у окна, получить довольно неплохое освещение можно при помощи вогнутого зеркала. Если же микроскоп находится в темном помещении, для подсветки используются плоское зеркало и внешний осветитель.

 

Увеличение микроскопа равно произведению увеличения объектива и окуляра. При увеличении окуляра равном 10 и увеличении объектива равном 40 общий коэффициент увеличения равен 400. Обычно в комплект исследовательского микроскопа входят объективы с увеличением от 4 до 100. Типичный комплект объективов микроскопа для любительских и учебных исследований (х 4, х10 и х 40), обеспечивает увеличение от 40 до 400.

 

Разрешающая способность – другая важнейшая характеристика микроскопа, определяющая его качество и четкость формируемого им изображения. Чем больше разрешающая способность, тем больше мелких деталей можно рассмотреть при сильном увеличении. В связи с разрешающей способностью говорят о «полезном» и «бесполезном» увеличении. «Полезным» называется предельное увеличение, при котором обеспечивается максимальная деталировка изображения. Дальнейшее увеличение («бесполезное») не поддерживается разрешающей способностью микроскопа и не выявляет новых деталей, зато может негативно повлиять на четкость и контраст изображения. Таким образом, предел полезного увеличения светового микроскопа ограничивается не общим коэффициентом увеличения объектива и окуляра - его при желании можно сделать сколь угодно большим, - а качеством оптических компонентов микроскопа, то есть, разрешающей способностью.Рис. 2

1. Осветитель

2. Ирисовая полевая диафрагма

3. Зеркало

4. Ирисовая апертурная диафрагма

5. Конденсор

6. Препарат

6'. Увеличенное действительное промежуточное

изображение препарата, образуемое объективом

6''. Увеличенное мнимое окончательное

изображение препарата, наблюдаемое в окуляре

7. Объектив

8. Окуляр

 

 

Микроскоп включает в себя три основные функциональные части:

 

1. Осветительная часть

Предназначена для создания светового потока, который позволяет осветить объект таким образом, чтобы последующие части микроскопа предельно точно выполняли свои функции. Осветительная часть микроскопа проходящего света расположена за объектом под объективом в прямых микроскопах и перед объектом над объективом в инвертированных.

Осветительная часть включает источник света (лампа и электрический блок питания) и оптико-механическую систему (коллектор, конденсор, полевая и апертурная регулируемые/ирисовые диафрагмы).

 

2. Воспроизводящая часть

Предназначена для воспроизведения объекта в плоскости изображения с требуемым для исследования качеством изображения и увеличения (т.е. для построения такого изображения, которое как можно точнее и во всех деталях воспроизводило бы объект с соответствующим оптике микроскопа разрешением, увеличением, контрастом и цветопередачей).

Воспроизводящая часть обеспечивает первую ступень увеличения и расположена после объекта до плоскости изображения микроскопа. Воспроизводящая часть включает объектив и промежуточную оптическую систему.

Современные микроскопы последнего поколения базируются на оптических системах объективов, скорректированных на бесконечность.

Это требует дополнительно применения так называемых тубусных систем, которые параллельные пучки света, выходящие из объектива, «собирают» в плоскости изображения микроскопа.

 

3. Визуализирующая часть

Предназначена для получения реального изображения объекта на сетчатке глаза, фотопленке или пластинке, на экране телевизионного или компьютерного монитора с дополнительным увеличением (вторая ступень увеличения).

 

Визуализирующая часть расположена между плоскостью изображения объектива и глазами наблюдателя (камерой, фотокамерой).

Визуализирующая часть включает монокулярную, бинокулярную или тринокулярную визуальную насадку с наблюдательной системой (окулярами, которые работают как лупа).

Кроме того, к этой части относятся системы дополнительного увеличения (системы оптовара/смены увеличения); проекционные насадки, в том числе дискуссионные для двух и более наблюдателей; рисовальные аппараты; системы анализа и документирования изображения с соответствующими согласующими элементами (фотоканал).

Основные методы работы с микроскопом

 

Метод светлого поля в проходящем свете. Подходит для изучения прозрачных объектов с неоднородными включениями (тонкие срезы растительных и животных тканей, простейшие микроорганизмы в жидкостях, тонкие полированные пластинки некоторых минералов). Осветитель и конденсор располагаются ниже предметного столика. Изображение формирует свет, проходящий через прозрачную среду и поглощаемый более плотными включениями. Для повышения контраста изображения часто используются красители, концентрация которых тем больше, чем больше плотность участка образца.

 

Метод светлого поля в отраженном свете. Используется для изучения непрозрачных объектов (металлов, руд, минералов), а также объектов, из которых невозможно или нежелательно брать образцы для приготовления полупрозрачных микропрепаратов (ювелирных изделий, произведений искусства и пр.) Освещение поступает сверху, обычно через объектив, который в данном случае играет также роль конденсора.

 

Метод косого освещения и метод темного поля. Методы для исследования образцов с очень низким контрастом, например, практически прозрачных живых клеток. Проходящий свет подают на образец не снизу, а немного сбоку, благодаря чему становятся заметны тени, которые образуют плотные включения (метод косого освещения). Сместив конденсор таким образом, что его прямой свет вообще не будет попадать на объектив (образец при этом освещается только косыми лучами на просвет), в окуляре микроскопа можно наблюдать белый объект на черном фоне (метод темного поля). Оба метода подходят только для микроскопов, конструкция которых допускает перемещение конденсора относительно оптической оси микроскопа.


Дата добавления: 2015-09-03 | Просмотры: 1238 | Нарушение авторских прав



1 | 2 | 3 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.01 сек.)