Классификация объективов
Классификация объективов значительно сложнее классификации микроскопов. Объективы разделяются по принципу расчетного качества изображения, параметрическим и конструктивно-технологическим признакам, а также по методам исследования и контрастирования.
По принципу расчетного качества изображения объективы могут быть:
- ахроматическими;
- апохроматическими;
- объективами плоского поля (план).
Ахроматические объективы.
Ахроматические объективы рассчитаны для применения в спектральном диапазоне 486–656 нм. Исправление любой аберрации (ахроматизация) выполнено для двух длин волн. В этих объективах устранены сферическая аберрация, хроматическая аберрация положения, кома, астигматизм и частично — сферохроматическая аберрация. Изображение объекта имеет несколько синевато-красноватый оттенок.
Апохроматические объективы.
Апохроматические объективы имеют расширенную спектральную область, и ахроматизация выполняется для трех длин волн. При этом, кроме хроматизма положения, сферической аберрации, комы и астигматизма, достаточно хорошо исправляются также вторичный спектр и сферохроматическая аберрация, благодаря введению в схему линз из кристаллов и специальных стекол. По сравнению с ахроматами, эти объективы обычно имеют повышенные числовые апертуры, дают четкое изображение и точно передают цвет объекта.
Полуапохроматы или микрофлюары.
Современные объективы, обладающие промежуточным качеством изображения.
Планобъективы.
В планобъективах исправлена кривизна изображения по полю, что обеспечивает резкое изображение объекта по всему полю наблюдения. Планобъективы обычно применяются при фотографировании, причем наиболее эффективно применение планапохроматов.
Потребность в подобного типа объективах возрастает, однако они достаточно дороги из-за оптической схемы, реализующей плоское поле изображения, и применяемых оптических сред. Поэтому рутинные и рабочие микроскопы комплектуются так называемыми экономичными объективами. К ним относятся объективы с улучшенным качеством изображения по полю: ахростигматы (LEICA), СР-ахроматы и ахропланы (CARL ZEISS), стигмахроматы (ЛОМО).
По параметрическим признакам объективы делятся следующим образом:
1. объективы с конечной длиной тубуса (например, 160 мм) и объективы, скорректированные на длину тубуса «бесконечность» (например, с дополнительной тубусной системой, имеющей фокусное расстояние 160 мм);
2. объективы малых (до 10х); средних (до 50х) и больших (более 50х) увеличений, а также объективы со сверхбольшим увеличением (свыше 100х);
3. объективы малых (до 0,25), средних (до 0,65) и больших (более 0,65) числовых апертур, а также объективы с увеличенными (по сравнению с обычными) числовыми апертурами (например, объективы апохроматической коррекции, а также специальные объективы для люминесцентных микроскопов);
4. объективы с увеличенными (по сравнению с обычными) рабочими расстояниями, а также с большими и сверхбольшими рабочими расстояниями (объективы для работы в инвертированных микроскопах). Рабочее расстояние — это свободное расстояние между объектом (плоскостью покровного стекла) и нижним краем оправы (линзы, если она выступает) фронтального компонента объектива;
5. объективы, обеспечивающие наблюдение в пределах нормального линейного поля (до 18 мм); широкопольные объективы (до 22,5 мм); сверхширокопольные объективы (более 22,5 мм);
6. объективы стандартные (45 мм, 33 мм) и нестандартные по высоте.
Высота — расстояние от опорной плоскости объектива (плоскости соприкосновения ввинченного объектива с револьверным устройством) до плоскости предмета при сфокусированном микроскопе, является постоянной величиной и обеспечивает парфокальность комплекта аналогичных по высоте объективов разного увеличения, установленных в револьверном устройстве. Иными словами, если с помощью объектива одного увеличения получить резкое изображение объекта, то при переходе к последующим увеличениям изображение объекта остается резким в пределах глубины резкости объектива.
По конструктивно-технологическим признакам существует следующее разделение:
1. объективы, имеющие пружинящую оправу (начиная с числовой апертуры 0,50), и без нее;
2. объективы, имеющие ирисовую диафрагму внутри для изменения числовой апертуры (например, в объективах с увеличенной числовой апертурой, в объективах проходящего света для реализации метода темного поля, в поляризационных объективах отраженного света);
3. объективы с корректирующей (управляющей) оправой, которая обеспечивает движение оптических элементов внутри объектива (например, для корректировки качества изображения объектива при работе с различной толщиной покровного стекла или с различными иммерсионными жидкостями; а также для изменения увеличения при плавной — панкратической — смене увеличения) и без нее.
По обеспечению методов исследования и контрастирования объективы можно разделить следующим образом:
1. объективы, работающие с покровным и без покровного стекла;
2. объективы проходящего и отраженного света (безрефлексные); люминесцентные объективы (с минимумом собственной люминесценции); поляризационные объективы (без натяжения стекла в оптических элементах, т. е. не вносящие собственную деполяризацию); фазовые объективы (имеющие фазовый элемент — полупрозрачное кольцо внутри объектива); объективы ДИК (DIC), работающие по методу дифференциально-интерференционного контраста (поляризационные с призменным элементом); эпиобъективы (объективы отраженного света, предназначенные для обеспечения методов светлого и темного поля, имеют в конструкции специально рассчитанные осветительные эпи-зеркала);
3. иммерсионные и безыммерсионные объективы.
Иммерсия (от лат. immersio — погружение) — жидкость, заполняющая пространство между объектом наблюдения и специальным иммерсионным объективом (конденсором и предметным стеклом). В основном применяются три типа иммерсионных жидкостей: масляная иммерсия (МИ/Oil), водная иммерсия (ВИ/W) и глицериновая иммерсия (ГИ/Glyc), причем последняя в основном применяется в ультрафиолетовой микроскопии. Иммерсия применяется в тех случаях, когда требуется повысить разрешающую способность микроскопа или её применения требует технологический процесс микроскопирования. При этом происходит:
1. повышение видимости за счет увеличения разности показателя преломления среды и объекта;
2. увеличение глубины просматриваемого слоя, который зависит от показателя преломления среды.
Кроме того, иммерсионная жидкость может уменьшать количество рассеянного света за счет исчезновения бликов от объекта. При этом устраняются неизбежные потери света при его попадании в объектив.
Иммерсионные объективы. Качество изображения, параметры и оптическая конструкция иммерсионных объективов рассчитываются и выбираются с учетом толщины слоя иммерсии, которая рассматривается как дополнительная линза с соответствующим показателем преломления. Иммерсионная жидкость, расположенная между объектом и фронтальным компонентом объектива, увеличивает угол, под которым рассматривается объект (апертурный угол). Числовая апертура безыммерсионного (сухого) объектива не превышает 1,0 (разрешающая способность порядка 0,3 мкм для основной длины волны); иммерсионного — доходит до 1,40 в зависимости от показателя преломления иммерсии и технологических возможностей изготовления фронтальной линзы (разрешающая способность такого объектива порядка 0,12 мкм). Иммерсионные объективы больших увеличений имеют короткое фокусное расстояние — 1,5–2,5 мм при свободном рабочем расстоянии 0,1–0,3 мм (расстояние от плоскости препарата до оправы фронтальной линзы объектива).
Дата добавления: 2015-09-03 | Просмотры: 541 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 |
|