АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Пусковые механизмы действия радиоактивного облучения на организм

Прочитайте:
  1. AT : химич. Природа, строение, свойства, механизм специфического взаимодействия с АГ
  2. B-лактамазы широкого спектра действия
  3. Hеpвные и гумоpальные механизмы pегуляции
  4. I. Нифедипин короткого действия (10 мг)
  5. II. Механизмы реабсорбции в проксимальных канальцах
  6. III. Классификация лекарственных форм в зависимости от способа введения в организм.
  7. III. Механизмы реабсорбции в проксимальных канальцах (продолжение)
  8. III. Механизмы регуляции количества ферментов
  9. III. Механизмы регуляции количества ферментов
  10. III. Механизмы регуляции количества ферментов: индукция, репрессия, дерепрессия.

В организме животных и человека нет специализированных рецепторов или анализаторов, которые реагировали бы на радиацию. В литературе описан радиологический парадокс – несмотря на ничтожное воздействие радиации, организм реагирует в самой выраженной степени.

При воздействии радиации фотон, попадая в молекулу биологически активного вещества «выбивает» электрон из атома биосубстрата и молекула делится на «-» заряд (выбитый электрон), остаток молекулы и ионизирующее излучение. Тропность радиации: наиболее уязвимые биосубстраты при действии радиации это фосфолипиды и нуклеиновые кислоты. Органотропность – щитовидная железа, печень, почки, мышцы, костный мозг. Наиболее поражаемые органы при инкорпорировании: органы дыхания и ЖКТ (пути поступления).

Биосубстрат теряет свою функциональную активность, молекула не выполняет свою функцию, что придает остатку молекулы биологически активного вещества чужеродные свойства – развивается «радиационный эндотоксикоз». Организм стремится избавиться от таких молекул – развивается острая лучевая болезнь.

Основы патогенеза лучевой болезни.

- Нарушается функция нуклеиновых кислот, биомембран, фосфолипидов, ферментов;

- в организме происходит накопление продуктов деструкции этих биосубстратов – радиационный эндотоксикоз.

Атака бисубстратов свободными радикалами приводит к следующим нарушениям:

- проницаемости клеточной мембраны;

- повышение деления клеток;

- снижение проведения нервных импульсов;

- нарушение окислительного фосфорилирования.

В конечном итоге нарушаются функция и структура органов и систем, что приводит к гибели организма. Одним из наиболее повреждаемых субстратов являются фосфолипиды - это ворота любой клетки. Фосфолипиды имеют углеродный скелет С – С – С, содержат жирные кислоты, двойные связи, которые являются мишенями в атаках свободных радикалов. В последствии нарушается структура двойной связи – диеновая конъюгация. Образование свободных радикалов происходит и в норме, но все зависит от интенсивности свободнорадикальных процессов. Если образование свободных радикалов повышено, то антиоксидантная система не в состоянии «погасить» уже неконтролируемый процесс ПОЛ, что приводит к гибели всего организма.

 


Дата добавления: 2015-07-25 | Просмотры: 562 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)