АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Механизм действия аминогликозидов
АМИНОГЛИКОЗИДЫ И ГЛИКОПЕПТИДЫ
КЛАССИФИКАЦИЯ
АМИНОГЛИКОЗИДЫ
| ГЛИКОПЕПТИДЫ
| | | I
ПОКОЛЕНИЕ
| II
ПОКОЛЕНИЕ
| III ПОКОЛЕНИЕ
|
12. Ванкомицин (Эдицин)
13. Тейкопланин (Таргоцид)
| | 1. Стрептомицин
2. Неомицин
3. Канамицин
4. Мономицин
| 5. Гентамицин (Гентамицина сульфат, Гарамицин)
| 6. Амикацин
7. Тобрамицин
8. Нетилмицин
9. Сизомицин
10. Изепамицин
11.Паромицин
| |
Механизм действия аминогликозидов
Основное клиническое значение аминогликозидов заключается в их активности в отношении аэробных грамотрицательных бактерий.
Механизм действия антибиотиков-аминогликозидов связан с необратимым угнетением синтеза белка на уровне рибосом у чувствительных к ним микроорганизмов. В отличие от других ингибиторов синтеза белка аминогликозиды оказывают не бактериостатическое, а бактерицидное действие. Аминогликозиды проникают в клетки бактерий путем пассивной диффузии через поры наружной мембраны и путем активного транспорта. Транспорт аминогликозидов через цитоплазматическую мембрану зависит от переноса электронов в дыхательной цепи, этот этап поступления их в клетку, т.н. энергозависимый этап I, является лимитирующим. Транспорт аминогликозидов через цитоплазматическую мембрану замедляется или полностью блокируется в присутствии ионов Ca2+ или Mg2+, в гиперосмолярной среде, при низких значениях pH и в анаэробных условиях. Так, например, антибактериальная активность аминогликозидов значительно снижается в анаэробной среде абсцессов и в гиперосмолярной кислой моче.
После проникновения в клетку аминогликозиды связываются со специфическими белками-рецепторами на 30S субъединице рибосом бактерий. 30S субъединица состоит из 21 белка и одной молекулы 16S рРНК (рибосомной РНК). Например, в связывании стрептомицина с рибосомами участвуют, по крайней мере три белка и, возможно, 16S рРНК.
Аминогликозиды нарушают рибосомальный белковый синтез несколькими путями: 1) антибиотики связываются с 30S субъединицей рибосомы и нарушают инициацию синтеза белка, фиксируя комплекс, состоящий из 30S- и 50S- субъединиц, на инициирующем кодоне иРНК; это приводит к накоплению аномальных инициирующих комплексов (т.н. моносомы) и прекращению дальнейшей трансляции; 2) связываясь с 30S субъединицей рибосомы, аминогликозиды нарушают считывание информации с РНК, что приводит к преждевременному окончанию трансляции и отсоединению рибосомного комплекса от белка, синтез которого не завершен; 3) кроме того, аминогликозиды вызывают одиночные аминокислотные замены в растущей полипептидной цепи, в результате чего образуются дефектные белки. Синтезирующиеся аномальные белки, встраиваясь в цитоплазматическую мембрану, могут нарушать ее структуру, изменять проницаемость и ускорять проникновение аминогликозидов внутрь клетки. Этот этап транспорта аминогликозидов — т.н. энергозависимый этап II. В результате постепенного разрушения цитоплазматической мембраны происходит выход из бактериальной клетки ионов, крупных молекул, белков.
Бактерицидный эффект аминогликозидов, возможно, объясняется тем, что образование неполноценных полипептидов и угнетение синтеза нормальных белков в микробной клетке приводит к нарушению важных функций клетки, поддерживающих ее жизнеспособность, в т.ч. к нарушению структуры и функции цитоплазматической мембраны бактерий и, в конечном счете, приводит к гибели клетки.
Дата добавления: 2015-09-18 | Просмотры: 624 | Нарушение авторских прав
1 | 2 |
|