АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Векторы в пространстве

Прочитайте:
  1. A. абсолютная неподвижность, неперемещаемость в пространстве без ущерба функциональному назначению
  2. VI-а. Прямая в пространстве
  3. VI-а. Прямая в пространстве
  4. VI-а. Прямая в пространстве
  5. VI-а. Прямая в пространстве
  6. VI-а. Прямая в пространстве
  7. VI-а. Прямая в пространстве
  8. VI. Прямая в пространстве
  9. VI. Прямая в пространстве
  10. VI. Прямая в пространстве

Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы.

Основная цель - закрепить известные учащимся из курса планиметрии сведения о векторах и действиях над ними, ввести понятие компланарных векторов в пространстве и рассмотреть вопрос о разложении любого вектора по трем данным некомпланарным векторам.

Основные определения, относящиеся к действиям над векторами в пространстве, вводятся так же, как и для векторов на плоскости. Поэтому изложение этой части материала является достаточно сжатым. Более подробно рассматриваются вопросы, характерные для векторов в пространстве: компланарность векторов, правило параллелепипеда сложения трех некомпланарных векторов, разло­жение вектора по трем некомпланарным векторам.

2. Метод координат в пространстве. Движения
Координаты точки и координаты вектора. Скалярное произведение векторов. Уравнение плоскости. Движения. Преобразование подобия.

Основная цель — сформировать умение учащихся применять векторно - координатный метод к решению задач на вычисление углов между прямыми и плоскостями и рас­стояний между двумя точками, от точки до плоскости.

Данный раздел является непосредственным продолже­нием предыдущего. Вводится понятие прямоугольной системы координат в пространстве, даются определения ко­ординат точки и координат вектора, рассматриваются простейшие задачи и координатах. Затем вводится ска­лярное произведение векторов, кратко перечисляются его свойства (без доказательства, поскольку соответствующие доказательства были в курсе планиметрии) и выводятся формулы для вычисления углов между двумя прямыми, между прямой и плоскостью. Дан также вывод уравнения плоскости и формулы расстояния от точки до плоскости.

В конце раздела изучаются движения в пространстве: центральная симметрия, осевая симметрия, зеркальная симметрия. Кроме того, рассмотрено преобразование подо­бия.


Дата добавления: 2015-09-18 | Просмотры: 990 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)