Введение. Предмет стереометрии. Аксиомы стереометрии
Предмет стереометрии. Аксиомы стереометрии. Некоторые следствия из аксиом.
Основная цель— познакомить учащихся с содержанием курса стереометрии, с основными понятиями и аксиомами, принятыми в данном курсе, вывести первые следствия из аксиом, дать представление о геометрических телах и их поверхностях, об изображении пространственных фигур на чертеже, о прикладном значении геометрии.
Изучение стереометрии должно базироваться на сочетании наглядности и логической строгости. Опора на наглядность — непременное условие успешного усвоения материала, и в связи с этим нужно уделить большое внимание правильному изображению на чертеже пространственных фигур. Однако наглядность должна быть пронизана строгой логикой. Курс стереометрии предъявляет в этом отношении более высокие требования к учащимся. В отличие от курса планиметрии здесь уже с самого начала формулируются аксиомы о взаимном расположении точек, прямых и плоскостей в пространстве, и далее изучение свойств взаимного расположения прямых и плоскостей проходит на основе этих аксиом. Тем самым задается высокий уровень строгости в логических рассуждениях, который должен выдерживаться на протяжении всего курса.
3. Параллельность прямых и плоскостей Параллельность прямых, прямой и плоскости. Взаимное расположение двух прямых в пространстве. Угол между двумя прямыми. Параллельность плоскостей. Тетраэдр и параллелепипед.
Основная цель — сформировать представления учащихся о возможных случаях взаимного расположения двух прямых в пространстве (прямые пересекаются, прямые параллельны, прямые скрещиваются), прямой и плоскости (прямая лежит в плоскости, прямая и плоскость пересекаются, прямая и плоскость параллельны), изучить свойства и признаки параллельности прямых и плоскостей.
Особенность данного курса состоит в том, что уже в первой главе вводятся в рассмотрение тетраэдр и параллелепипед и устанавливаются некоторые их свойства. Это дает возможность отрабатывать понятия параллельности прямых и плоскостей (а в следующей главе также и понятия перпендикулярности прямых и плоскостей) на этих двух видах многогранников, что, в свою очередь, создает определенный задел к главе «Многогранники». Отдельный пункт посвящен построению на чертеже сечений тетраэдра и параллелепипеда, что представляется важным как для решения геометрических задач, так и, вообще, для развития пространственных представлений учащихся.
В рамках этой темы учащиеся знакомятся также с параллельным проектированием и его свойствами, используемыми при изображении пространственных фигур на чертеже.
4. Перпендикулярность прямых и плоскостей Перпендикулярность прямой и плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью. Двугранный угол. Перпендикулярность плоскостей. Трехгранный угол. Многогранный угол.
Основная цель — ввести понятия перпендикулярности прямых и плоскостей, изучить признаки перпендикулярности прямой и плоскости, двух плоскостей, ввести основные метрические понятия: расстояние от точки до плоскости, расстояние между параллельными плоскостями, между параллельными прямой и плоскостью, расстояние между скрещивающимися прямыми, угол между прямой и плоскостью, угол между двумя плоскостями, изучить свойства прямоугольного параллелепипеда.
Понятие перпендикулярности и основанные на нем метрические понятия (расстояния, углы) существенно расширяют класс стереометрических задач, появляется много задач на вычисление, широко использующих известные факты из планиметрии.
Дата добавления: 2015-09-18 | Просмотры: 911 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|