АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Классификация рефлексов

Прочитайте:
  1. B. Классификация коматозных состояний
  2. G. Клиническая классификация ПЭ
  3. I. Определение, классификация, этиология и
  4. II. Классификация электротравм.
  5. IV. Классификация паразитов.
  6. Plathelmintes. Тип Плоские черви. Классификация. Характерные черты организации. Медицинское значение.
  7. PTNM Патогистологическая классификация.
  8. Аборты, этиология и классификация. Мумификация, мацерация, путрификация плода. Профилактика абортов.
  9. Алиментарные заболевания, их классификация, профилактика.
  10. АНАТОМИЧЕСКАЯ КЛАССИФИКАЦИЯ

По биологическому значению: пищевые, половые, оборонительные, локомоторные, позно-тонические, ориентировочные.

В зависимости от расположения рецепторов: экстрарецептивные, интеррецептивные и проприорецептивные.

В зависимости от того, какие отделы мозга необходимы для осуществления рефлекса: спинальные, бульбарные, мезенцефальные, кортикальные.

В зависимости от отдела нервной системы, который реализует ответ: соматические или вегетативные.

По характеру ответной реакции: моторные, секреторные, сосудодвигательные. Моторные рефлексы по длительности ответной реакции разделяются на фазические и тонические.

По приспособительному значению рефлексы делятся на безусловные и условные.

· Синапсы ЦНС, строение, свойства, классификация.

Синапс — специализированный контакт между нервными клетками или нервными клетками и другими возбудимыми образованиями, обеспечивающий передачу возбуждения с сохранением его информационной значимости. С помощью синапсов осуществляется взаимодействие разнородных по функциям тканей организма, например нервной и мышечной, нервной и секреторной.

^ Структура синапса.

Пресинаптическое окончание аксона нейрона при подходе к иннервируемой клетке теряет миелиновую оболочку, что несколько снижает скорость распространения волны возбуждения. Небольшое утолщение на конце волокна, называемое синоптической бляшкой, содержит синаптические пузырьки размером 20—60 нм с медиатором — веществом, способствующим передаче возбуждения в синапсе.

^ Синаптическая щель — пространство между пресинаптическим окончанием и участком мембраны эффекторной клетки является непосредственным продолжением межклеточного пространства.

^ Постсинаптическая мембрана — участок эффекторной клетки, контактирующий с пресинаптической мембраной через синаптическую щель.

Классификация синапсов.

В соответствии с морфологическим принципом синапсы подразделяют на:

• аксо-аксональные (между двумя аксонами);

• аксодендритические (между аксоном одного нейрона и дендритом другого);

• аксосоматические (между аксоном одного нейрона и телом другого);

• дендродендритические (между дендритами двух или нескольких нейронов);

• нервно-мышечные (между аксоном мотонейрона и исчерченным мышечным волокном);

• аксоэпителиальные (между секреторным нервным волокном и грану-лоцитом);

• межнейронные (общее название синапсов между какими-либо элементами двух нейронов).

^ Все синапсы делят на центральные (в головном и спинном мозге) и периферические (нервно-мышечные, аксоэпителиальные и синапсы вегетативных ганглиев).

В соответствии с нейрохимическим принципом синапсы классифицируют по виду химического вещества — медиатора, с помощью которого происходит возбуждение и торможение эффекторной клетки.

^ По способу передачи возбуждения синапсы подразделяют на три группы. Первую составляют синапсы с химической природой передачи посредством медиаторов (например, нервно-мышечные); вторую — синапсы с передачей электрического сигнала непосредственно с пре- на постсинаптическую мембрану. Третья группа представлена «смешанными» синапсами, сочетающими элементы как химической, так и электрической передачи.

По конечному физиологическому эффекту, а также по изменению потенциала постсинаптической мембраны, различают возбуждающие и тормозные синапсы.

^ Механизм проведения возбуждения в синапсах. Передача возбуждения в химическом синапсе — сложный физиологический процесс, протекающий в несколько стадий. Он включает синтез и секрецию медиатора; взаимодействие медиатора с рецепторами постсинаптической мембраны; инактивирование медиатора. В целом синапс осуществляет последовательную трансформацию электрического сигнала, поступающего по нервному волокну, в энергию химических превращений на уровне синаптической щели и постсинаптической мембраны, которая затем снова трансформируется в энергию распространяющегося возбуждения в эффекторной клетке.

Свойства синапсов.


  • Пластичность синапса.

  • Одностороннее проведение возбуждения.

  • Низкая лабильность и высокая утомляемость синапса обусловлены временем распространения предыдущего импульса и наличием у него периода абсолютной рефрактерности.

  • Высокая избирательная чувствительность синапса к химическим веществам обусловлена специфичностью хеморецепторов постсинаптической мембраны.

  • Способность синапса трансформировать возбуждение связана с его низкой функциональной лабильностью и спецификой протекающих в нем химических процессов.

  • ^ Синаптическая задержка, т.е. время между приходом импульса в преси-наптическое окончание и началом ответа, составляет 1—3 мс. Суммация возбуждений определяется переходом местного возбуждения в распространяющееся в результате временного взаимодействия серии возбуждающих постсинаптических потенциалов.

  • ^ Трофическая функция синапсов

 

§ Медиаторные механизмы передачи возбуждения в ЦНС

Медиаторами, или нейротрансмиттерами, нейронов ЦНС являются различные биологически активные вещества. В зависимости от химической природы их можно разделить на 4 группы: 1) амины (ацетилхолин, норадреналин, дофамин, серотонин), 2) аминокислоты (глицин, глутаминовая, аспарагиновая, гамма-аминомасляная - ГАМК), 3) пуриновые и нуклеотиды (АТФ); 4) нейропептиды (вещество Р, вазопрессин, опоидни пептиды и др.).
Раньше считали, что во всех окончаниях одного нейрона "выделяется один медиатор (по принципу Дейла). За последние годы выяснили, что во многих нейронах может содержаться 2 медиаторы или больше.
По действию медиаторы можно разделить на ионотропных и метаболотропни. Ионотропных медиаторы после взаимодействия с циторецепторамы постсинаптической мембраны изменяют проницаемость ионных каналов. Метаболотропни медиаторы постсинаптическую действие проявляют путем активации специфических ферментов мембраны. Вследствие этого в мембране или (чаще) в цитоплазме клетки активируются так называемые вторичные посредники (вторичные мессенджеры), которые в свою очередь запускают каскады внутриклеточных процессов, тем самым влияя на функции клеток.
К основным мессенджеров систем внутриклеточной сигнализации относят аденилатциклазной и полифосфоинозитидну. В основе первой лежит аденилатциклазной механизм. Центральным звеном второй системы является кальциймобилизуючий каскад полифосфоинозитидив, который контролируется фосфолипазой С. Физиологический эффект этих систем осуществляется путем активации специфических ферментов - протеинфосфокиназ, конечным итогом чего является широкий спектр воздействия на белковые субстраты, которые могут подвергаться фосфорилированию. Вследствие этого изменяется проницаемость мембран для ионов, синтезируются и выделяются медиаторы, регулируется синтез белков, осуществляется энергетический обмен и т.д.. Метаболотропним эффектом обладают большинство нейропептидов. Метаболические изменения, происходящие в клетке или на ее мембране под действием метаболотропних медиаторов, длительные, чем при действии ионотропных медиаторов. Они могут затрагивать даже геном клетки.
По функциональным свойствам медиаторы ЦНС делятся на возбуждающие, тормозные и модулирующие. Возбуждающими медиаторами могут быть различные вещества, которые вызывают деполяризацию постсинаптической мембраны. Важнейшее значение имеют производные глутаминовой кислоты (глутамата), субстанция Р. Некоторые центральные нейроны имеют холинорецепторы, т.е. содержат на постсинаптической мембране рецепторы, которые реагируют с холинового соединениями, например, ацетилхолин в клетках Реншоу.. возбуждающими медиаторами могут быть также моноамины (норадреналин, дофамин, серотонин). € основания считать, что тип медиатора, который образуется в синапсе, обусловлен не только свойствами окончания, но и общим направлением биохимических процессов во всем нейроне.
Природа тормозного медиатора до конца не установлена. Полагают, что в синапсах различных нервных структур эту функцию могут выполнять аминокислоты - глицин и ГАМК.

 

· Электрические синапсы

Кроме синапсов с химической передачей возбуждения преимущественно в центральной нервной системе (ЦНС) встречаются синапсы с электрической передачей. Возбуждающим электрическим синапсам свойственны очень узкая синаптическая щель и очень низкое удельное сопротивление сближенных пре- и постсинаптических мембран, что обеспечивает эффективное прохождение локальных электрических токов. Низкое сопротивление, как правило, связано с наличием поперечных каналов, пересекающих обе мембраны, т. е. идущих из клетки в клетку (щелевой контакт). Каналы образуются белковыми молекулами (полумолекулами) каждой из контактирующих мембран, которые соединяются комплементарно. Эта структура легко проходима для электрического тока.


Дата добавления: 2015-10-20 | Просмотры: 1358 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)