АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Основной и общий обмен веществ.

Прочитайте:
  1. A) общий адаптационный синдром
  2. II На обмен белков.
  3. II. Нарушения водно-электролитного обмена
  4. II. ОБМЕН ЖЕЛЕЗА
  5. III на обмен белков
  6. III.ОБЩЕГО НАБЛЮДЕНИЯ (общий надзор).
  7. VIII. Нарушения липидного обмена
  8. А. Общий вид
  9. А. Общий обзор
  10. Анализ мочи общий

Различают общий обмен веществ и обмен веществ при полном покое. Обмен веществ в покое организма называют основным. Его определяют при следующих условиях: человек получает последний раз пищу за 12 ч до опыта. Испытуемого укладывают в постель и спустя 30 мин начинают определение газообмена. В этих условиях энергия тратится на работу сердца, дыхание, поддержание температуры тела и т.д. Но эта затрата энергии невелика. Главные затраты при определении основного обмена связаны с химическими процессами, всегда имеющими место в живых клетках. Величина основного обмена составляет от 4200 до 8400 кДж в сутки для мужчин и от 4200 до 7140 кДж - для женщин.

Обмен веществ может значительно изменяться при различных условиях. Так, например, во время сна обмен оказывается значительно меньшим. Интенсивность основного обмена во время сна уменьшается на 8-10% по сравнению с исследованием во время бодрствования. Во время работы, при мышечной нагрузке, наоборот, обмен значительно увеличивается. Увеличение обмена тем значительней, чем интенсивнее была мышечная нагрузка. В связи с этим работники различных профессий тратят неодинаковое количество энергии в сутки (от 12600 до 21000 кДж). Умственная работа вызывает незначительное повышение обмена веществ: всего на 2-3%. Всякие эмоциональные возбуждения неизбежно приводят к повышению обмена веществ. Обмен веществ изменяется и под влиянием приема пищи. После приема пищи обмен возрастает на 10-40%. Влияние пищи на обмен веществ не зависит от деятельности желудочно-кишечного тракта, оно обусловлено специфическим действием пищи на обмен. В связи с этим и принято говорить о специфическо-динамическом действии пищи на обмен, понимая под этим его увеличение после принятия пищи.

26. ТЕРМОРЕГУЛЯЦИЯ, физиологический процесс, обеспечивающий поддержание постоянной температуры в организме теплокровных животных и человека. Постоянство температуры – результат саморегуляции организма, необходимой для нормальной жизнедеятельности. Температура тела зависит от теплопродукции и теплоотдачи. Теплопродукция, т. е. выработка тепла в организме, зависит от интенсивности обмена веществ. Теплоотдача с поверхности тела во внешнюю среду осуществляется несколькими способами. Сосудистая теплоотдача заключается в изменении наполнения сосудов кожи кровью и скорости её протекания за счёт расширения или сужения просвета сосуда. Повышение кровенаполнения усиливает теплоотдачу, а уменьшение – снижает. Теплоотдача осуществляется также за счёт излучения и испарения воды с потом (при испарении пота с поверхности кожи выделяется избыток тепла, что обеспечивает нормальную температуру тела). Часть тепла выделяется с выдыхаемым воздухом, а также с мочой и калом. МЕХАНИЗМЫ ТЕПЛОПРОДУКЦИИ
Источником тепла в организме являются экзотермические реакции окисления белков, жиров, углеводов, а также гидролиза АТФ. При гидролизе питательных веществ часть осво­божденной энергии аккумулируется в АТФ, а часть рассеивается в виде теплоты (первичная теплота). При использовании энергии, аккумулированной в АГФ, часть энергии идет на выполнение полезной работы, часть рассеивается в виде тепла (вторичная теплота). Таким образом, два потока теплоты — первичной и вторичной — являются теплопродукцией. При высокой температуре среды или соприкосновении человека с горячим телом, часть тепла организм может получать извне (экзогенное тепло).
При необходимости повысить теплопродукцию (например, в условиях низкой темпера­туры среды), помимо возможности получения тепла извне, в организме существуют меха­низмы, повышающие продукцию тепла.
Классификация механизмов теплопродукции:
1.Сократительный термогенез — продукция тепла в результате сокращения скелетных мышц:
а произвольная активность локомоторного аппарата;
б) терморегуляционный тонус;
в) холодовая мышечная дрожь, или непроизвольная ритмическая активность скелет­ных мышц.
2.Несократительный термогенез, или недрожательный термогенез (продукция тепла в результате активации гликолиза, гликогенолиза и липолиза):
а)в скелетных мышцах (за счет разобщения окислительного фосфорилирования);
б) в печени;
в) в буром жире;
г) за счет специфико-динамического действия пищи.
Сократительный термогенез
При сокращении мышц возрастает гидролиз АТФ, и поэтому возрастает поток вторич­ной теплоты, идущей на согревание тела. Произвольная мышечная активность, в основном, возникает под влиянием коры больших полушарий. Опыт человека показывает, что в усло­виях низкой температуры среды необходимо движение. Поэтому реализуются условнорефлекторные акты, возрастает произвольная двигательная активность. Чем она выше, тем выше теплопродукция. Возможно повышение ее в 3—5 раз по сравнению с величиной ос­новного обмена. Обычно при снижении температуры среды и температуры крови первой реакцией является увеличение терморегуляционного тонуса. Впервые его выявили в 1937 г. у животных, а в 1952 г. — у человека. С помощью метода электромиографии показано, что при повышении тонуса мышц, вызванного переохлаждением, повышается электрическая активность мышц. С точки зрения механики сокращения, герморегуляционный тонус пред­ставляет собой микровибрацию. В среднем, при его появлении, теплопродукция возрастает на 20—45% от исходного уровня. При более значительном переохлаждении терморегуля­ционный тонус переходит в мышечную холодовую дрожь. Терморегуляционный тонус эко­номнее, чем мышечная дрожь. Обычно в его создании участвуют мышцы головы и шеи.
Дрожь, или холодовая мышечная дрожь, представляет собой непроизвольную ритмиче­скую активность поверхностно расположенных мышц, в результате которой теплопродук­ция возрастает по сравнению с исходным уровнем в 2—3 раза. Обычно вначале возникает дрожь в мышцах головы и шеи, затем — туловища и, наконец, конечностей. Считается, что эффективность теплопродукции при дрожи в 2,5 раза выше, чем при произвольной деятель­ности.
Сигналы от нейронов гипоталамуса идут через «центральный дрожатель­ный путь» (тектум и красное ядро) к альфа-мотонейронам спинного мозга, откуда сигналы идут к соответствующим мышцам, вызывая их активность. Курареподобные вещества (миорелаксанты) за счет блокады Н-холинорецепторов блокируют развитие терморегуляционного тонуса и холодовой дрожи. Это используется для создания искусственной гипотер­мии, а также учитывается при проведении оперативных вмешательств, при которых приме­няются миорелаксанты.
Несократительный термогенез
Он осуществляется путем повышения процессов окисления и снижения эффективности сопряжения окислительного фосфорилирования. Основным местом продукции тепла явля­ются скелетные мышцы, печень, бурый жир. За счет этого вида термогенеза теплопродук­ция может возрасти в 3 раза.
В скелетных мышцах повышение несократителыюго термогенеза связано с уменьшени­ем эффективности окислительного фосфорилирования за счет разобщения окисления и фо­сфорилирования, в печени — в основном, путем активации гликогенолиза и последующего окисления глюкозы. Бурый жир повышает теплопродукцию за счет липолиза (под влияни­ем симпатических воздействий и адреналина). Бурый жир расположен в затылочной облас­ти, между лопатками, в средостении по ходу крупных сосудов, в подмышечных впадинах. В условиях покоя около 10% тепла образуется в буром жире. При охлаждении роль бурого жира резко повышается. При холодовой адаптации (у жителей арктических зон) возрастает масса бурого жира и ее вклад в общую теплопродукцию.
Регуляция процессов несократительного термогенеза осуществляется путем активации симпатической системы и продукции гормонов щитовидной железы (они разобщают окислительное фосфорилирование) и мозгового слоя надпочечников.

 

27. Нефрон основная структурно-функц. единица почек позвоночных. Совокупность Н. (у человека в обеих почках их ок. 2 млн.) обеспечивает мочеобразование и др. функции почек. Различают бесклубочковые Н. (у нек-рых рыб), состоящие из клеток одного типа, и клубочковые (у др. позвоночных), состоящие из клеток, специализир. для выполнения осн. процессов мочеобразования - фильтрации, реабсорбции и секреции. У зародышей в состав Н. входят нефростомы. У всех позвоночных Н. имеет проксимальный сегмент и у большинства (кроме неск. видов костистых рыб) - дистальный. У птиц и млекопитающих в связи с формированием мозгового вещества почек имеется новая структура Н.- петля Генле. Клубочковый Н. начинается боуменовой капсулой, покрывающей сосудистый клубочек, вместе с к-рым она составляет мальпигиево тельце. Далее он продолжается различающимися по структуре и функции канальцами, обеспечивающими образование и продвижение мочи, изливающейся по собират. трубкам в систему выводных протоков и далее в почечную лоханку. Эпителий париетального листка капсулы переходит в шейку Н., снабжённую у низших позвоночных ресничками. У высших позвоночных эпителий капсулы обычно переходит в проксимальный каналец (гл. отдел Н.), состоящий из 2-3 частей; его отличит. особенность - наличие щёточной каёмки, клетки богаты пиноцитозными вакуолями, митохондриями, в них хорошо развит аппарат Гольджи. Следующий отдел Н.- соединительный (у пойкилотермных позвоночных) или петля Генле (у гомойотермных позвоночных). Соединит, каналец и тонкий, изгибающийся на 180В°, отдел петли образованы плоскими клетками с небольшим кол-вом органоидов. Дистальный сегмент Н. включает у птиц и млекопитающих толстый восходящий отдел петли Генле, дистальный извитой каналец и связующий отдел; у пойкилотермных позвоночных (при отсутствии петли Генле) в его состав входят только два последних канальца. Особенность клеток дистального сегмента - наличие в них многочисл. митохондрий и выраженная складчатость мембраны основания. Связующие отделы неск. Н. соединяются с собират. трубкой. Каждый отдел Н. имеет отличающиеся от др. отделов ультраструктуру и функцию, неодинакова и их роль в процессе мочеобра-зования. В любой клетке Н. функционально и биохимически отличаются свойства плазматич. мембран, обращенных в просвет Н. и в сторону межклеточного вещества. Зоны клеточных контактов в разных отделах Н. также обладают неодинаковыми свойствами, что весьма существенно для мочеобразования. Так, зона плотного контакта в проксимальном сегменте у млекопитающих хорошо проницаема для воды и ряда электролитов, в дистальном сегменте эта зона почти непроницаема для этих веществ. При действии антидиуретич. гормона увеличивается кол-во и агрегация частиц в лю-минальной плазматич. мембране, возрастает расстояние между клетками собират. трубок и повышается реабсорбция воды.


Дата добавления: 2015-11-02 | Просмотры: 408 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)