АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Технические средства и технологии

Прочитайте:
  1. Aнтиадренергические средства
  2. H1-АНТИГИСТАМИННЫЕ СРЕДСТВА
  3. I I. Средства, повышающие свертывание крови
  4. I Фибринолитические (тромболитические ) средства эндогенные - активаторы плазминогена, фибринолизин (плазмин)
  5. I-содержащие препараты щит ж-зы. Антитиреоидные средства.
  6. I. Средства понижающие адренергическое воздействие на ССС (Нейротропные средства)
  7. I. Средства, влияющие на свертывание крови.
  8. I. Средства, применяемые при ГНТ
  9. I. Средства, стимулирующие эритропоэз.
  10. II. Синтетические пероральные (таблетированные) противодиабетические средства

 

Основным методом исследования гемодинамики у наших больных был реогрофический мони­торинг, осуществлявшийся с помощью программно-аппаратных комплексов (далее — комплек­сы) четырех поколений. Все комплексы реализовывали автоматизированную обработку сигна­ла интегральной реографии тела человека (ИРГТ) по М.И. Тищенко (1973, [180]), однако су­щественным образом различались по своим техническим возможностям и, соответственно, качеству обработки сигнала.

Комплекс первого поколения "Реокор" производства МГП "Адаптация" (СПб) включал четы­рехканальный реограф Р4-02 производства Львовского завода радиоэлектронной аппарату­ры, аналогово-цифровой преобразователь (АЦП) "Щит" и персональный компьютер на базе процессора серии 286 (16 МГц, 1Мб, 20 Мб).

Комплекс второго поколения "Реоанализатор РиД-114Д" производства НПО "Реабилита­ция и Диагностика" (СПб) включал реограф Р4-02, АЦП производства НПО "РиД" и ПК того же типа.

Эти комплексы обрабатывали выбранный оператором участок кривой ИРГТ с запаздывани­ем около 1 мин и, таким образом, не могли считаться мониторными системами в полном смысле слова.

Качественный скачок ознаменовало внедрение комплексов третьего поколения "Реомонитор Диамант" (ЗАО "Диамант", СПб). Эта система позволяла обрабатывать сигнал ИРГТ в реальном масштабе времени и, таким образом, была первым истинным реографическим монитором. В состав комплекса входили реомонитор "Диамант", объединяв­ший реограф и АЦП в едином конструктивном блоке, и ПК класса 486 (100 МГц, 16 Мб, 500 Мб).

Рисунок 5.

 

Комплекс следующего, четвертого поколения (рис. 5) отличался большей мощностью встроен­ного процессора мониторного блока, программным обеспечением, работающим в ОС Microsoft Windows-95 и обеспечивающим более детальное ведение протокола мониторинга с расширенными функциональными возможностями и более мощным ПК класса Pentium (233 МГц, 32 Мб, 2 Гб).

 

Все комплексы в установленном порядке разрешены к использованию Минздравом и имеют метрологические сертификаты Госстандарта РФ.

Рисунок 6.

 

На рис. 6 показан вид экрана одной из конфигураций "Реомонитора Диамант", работающей в операционной системе Windows-95. Основное поле сигналов занимают кривые ЭКГ, ИРГТ и импедансной пневмограммы. Справа выведены выбранные из списка четыре показателя — ЧСС (мин"'), сердечный индекс (СИ, л•м-2•мин-1], общее периферическое сосудистое сопротивле­ние (ОПСС, дин•с• см-5] и частота дыхания (ЧД, мин-1). Крайнее правое поле занимает панель управления реомонитором.

Периоперационный мониторинг осуществлялся также следующими техническими средствами. Монитор "МХ-03" (ПО "Салют", СССР) применялся в клинике факультетской хирургии в 1994-1997 гг. Мониторы "Sirecust-762", "Sirecust-1260" (Siemens, Германия) и "Cardiocap" (Instrumentarium, Финляндия) использовались у больных, оперированных в Центральной медсан­части № 122 в 1997-1999 гг. В ДГБ №1 контроль состояния детей во время операции и анес­тезии осуществлялся системой "Sirecust-9000" (Siemens, Германия). Катетеризация легочной артерии (ЦМСЧ № 122, 1998-1999 гг.) выполнялась баллонными катетерами Swan-Ganz калибров 5F, 7F и 7,5F с гепаринизированной поверхностью SP5105Н, SP5107Н (Ohmeda, США и Spectromed, Сингапур) и Corodyn TD-1 (В. Braun, Германия) с помо­щью стандартных наборов интродьюсеров калибров 6F и 8F (В. Braun, Германия). Мониторирование давлений и измерение МОК термодилюционным способом осуществлялось монито­рами "Sirecust-1260", а газы и параметры КОС смешанной венозной крови определялись ап­паратом "ABL-50" (Radiometer, Дания).

Процедура катетеризации легочной артерии при условии заблаговременного получения и фикса­ции в истории болезни информированного согласия пациента осуществлялась по стандартной методике [208, 666] после подключения всех других мониторных систем. Баллончик раздували атмос­ферным воздухом, контроль положения катетера осуществляли по кривым давления на мониторе. Для седации во время процедуры применяли мидазолам в дозе 0,03-0,05 мг/кг внутривенно. В качестве термоиндикатора использовали изотонический раствор с температурой 0-5°С (флакон со льдом) или комнатной температуры в объеме 5 мл. Измерения МОК выполняли в конце фазы выдоха сериями по 3-4 в течение 2 мин. "Эксцессивные" результаты (отличавшиеся от других в данной серии более чем на 10%) отбрасывались, а текущее значение МОК рассчитывалось как среднее арифметическое принятых результатов. Это текущее значение использовалось далее для расчета всех производных величин (4.4.2.2).

Мониторинг газового состава дыхательной смеси проводился с помощью газовых мониторов "Copnomac-Ultima" (Instrumentarium, Финляндия), оснащенных датчиками непрерывного действия — парамагнитным для кислорода и инфракрасным для углекислого газа. Во время ИВЛ непре­рывно определялись концентрации кислорода, углекислого газа, закиси азота и паров жидкого ингаляционного анестетика во вдыхаемой и выдыхаемой газовой смеси. Измерения у всех боль­ных выполнялись как в стандартном варианте подключения линии забора проб (к тройнику пациента), так и в предложенном нами варианте забора проб из линии сброса наркозного аппа­рата, позволявшем определять "демпфированные" средние концентрации О2 и СО2 во всем объеме выдыхаемой смеси. Такой вариант получения смешанного выдыхаемого газа мы посчи­тали предпочтительным перед рекомендуемым в литературе (например, [1451]) использовани­ем проб газа из объемной смесительной камеры в линии выдоха. В последнем случае внутрен­ний объем камеры неизбежно приводит к формированию плохо вентилируемых "мертвых" зон, увеличивающих инертность данной измерительной системы в целом (проблема проточной вен­тиляции различных по геометрии объемов подробно разбирается теорией двигателей внутрен­него сгорания [142]). В использованной же нами схеме, когда пробы газа брались с помощью толстой иглы, введенной в полихлорвиниловый шланг длиной 5-6 м, подключенный к патрубку выхлопа аппарата ИВЛ, постоянный конвективный массообмен по всей длине шланга сводил инертность системы к минимуму. Эффективность приема контролировалась по графикам капнограммы и концентрации О2 (они должны были представлять собой горизонтальные прямые), а примесь свежего газа исключалась путем отсоединения линии сброса свежего газа от патруб­ка выхлопа (что на аппарате "Siemens-900C" можно сделать без серьезного демонтажа дыхательного контура).

 


Дата добавления: 2015-11-02 | Просмотры: 409 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)