АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Методы визуализации объемов желудочков и эхолокации потоков

Прочитайте:
  1. B) Дефект межжелудочковой перегородки
  2. B.фибрилляция желудочков
  3. I. Консервативные методы лечения и уход за больными с гинекологическими заболеваниями.
  4. I. Лабораторные методы
  5. I. Методы временного шинирования.
  6. I. МЕТОДЫ ИССЛЕДОВАНИЯ И ИХ РЕЗУЛЬТАТЫ
  7. I. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  8. II МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  9. II. Методы, подход и процедуры диагностики и лечения
  10. II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ

Начало попыткам расчета УОК по проекциям фазовых объемов ЛЖ на рентгеновскую пленку было положено еще в 20-е годы [174]. Рентгенокимография и, в особенности, двухпроекцион­ная ангиокардиография [271, 519, 678] позволяют с хорошей точностью определять разовую производительность сердца [174], однако лучевая нагрузка исключает применение этих мето­дик для целей мониторинга МОК.

Радионуклидная вентрикулография используется для измерения МОК в двух вариантах. В пер­вом случае фазовые проекции полостей желудочков регистрируют многократно — в течение нескольких сотен кардиоциклов после инъекции радиофармпрепарата [986]. Главное преиму­щество данной техники состоит в возможности динамического изучения МОК, например, в течение какого-либо теста [1402]. Второй вариант предполагает регистрацию проекций с по­мощью низкоинертной у-камеры лишь в течение "времени первого прохождения" препарата через сосудистое русло (15-20 с). При этом могут быть независимо зарегистрированы фазо­вые проекции всех полостей [639, 1222]. Стоимость аппаратуры, однако, ограничивает ис­пользование методов этой группы лишь исследовательскими задачами. Ультразвуковой метод определения МОК первоначально базировался на аналогичном принципе визуализации фазовых площадей сечения левого желудочка [401, 592, 1281]. В оценке глобальной сократительной функции желудочков по фракциям выброса этот подход незаменим и сейчас [136, 322, 999, 1238, 1430, 1575]. Визуализация потоков в полостях сердца и крупных сосудах стала возможной с внедрением в ультразвуковую технологию эффекта Ch.J. Doppler (1842) — изменения частоты принятой вол­ны по отношению к излученной при взаимном движении приемника и источника [165]. Ультразвуковые волны, отраженные потоком крови, принимаются датчиком, и по разнице частот излу­ченной и принятой волн определяется мгновенная линейная скорость потока в данной точке сечения сосуда. Величина потока рассчитывается далее как результат последовательного ин­тегрирования его линейных скоростей по сечению и времени [43, 128, 134, 188, 293, 1575]. Важно, что принцип Допплера позволяет определить не скорость источника вообще, а проекцию ее вектора на ось "источник-приемник". Следовательно, совпадение расчет­ной скорости потока с реальной тем выше, чем точнее ее вектор совпадает с этой осью: если угол между ними превышает 20-25°, данные становятся клинически неприемлемы­ми [273, 1430]. Этот важнейший источник ошибок порождает главную проблему допплеровского измерения МОК — проблему выбора и выдерживания оптимального скана, т.е. взаимного положения диаграммы направленности источника волн и оси потока. Ис­пользование наружных датчиков, например, для широко распространенного сканирова­ния аорты из супрастернального доступа, делает задачу особенно трудной [142 1,1633]; адекватный эхо-сигнал потока при этом удалось получить у 83-90% пациентов БИТ тера­певтического профиля [783, 11 19] и лишь у 27% кардиохирургических больных [1119]. Отмечают, что точность результатов измерения МОК прямо зависит от опыта врача-оператора [609]. Предложены [1109], на не нашли пока широкого применения допплеровские датчики с концентрической диаграммой направленности, нивелирующие влияние угла сканирования потока.

Вторая проблема состоит в том, что наиболее распространенные датчики с импульсным режи­мом излучения имеют физический верхний предел измеряемого диапазона скоростей, обус­ловленный своего рода "стробоскопическим эффектом" зондирующих импульсов: в итоге ис­точник, движущийся на приемник, может быть идентифицирован как неподвижный или удаляю­щийся. Этот предел допплеровского сдвига частот, называемый пределом Nyquist, равен поло­вине частоты зондирующих импульсов [1430] и ограничивает пределы измерений тем сущест­веннее, чем больше дистанция сканирования [783, 937]. В последние годы наиболее активно развивается чрезпищеводная техника эхокардиографии (Transesophageal Echocardiography—TEE) [1393,1394]. Чрезпищеводный доступ позволил заметно улучшить качество визуализации полостей сердца и крупных сосудов из-за "обхода" эхо-плотной грудной стенки и интенсивно поглощающих ультразвук легких [1575]. Это преимущество перевешивает топографо-анатомическую сложность получения оптимального скана, делающую ТЕЕ-мониторинг неинформативным у 8-11% пациентов [959, 1284]. Таким образом, оказалось возможным оценивать в динамике высококачественные сканы серд­ца. В итоге внимание исследователей переместилось с оценки глобальной функции желудочков (т.е. динамики их объемов в течение кардиоцикла) на ставшие доступными детали регионарной кинетики стенок сердца [1393, 1575]. Картина еще более обогатилась внедрением систем многоплоскостного сканирования [1175].

Открытая в 1935 году R. Tennant и C.J. Wiggers (1935, [1509]) быстрая реакция сократи­мости на изменения коронарной перфузии [145, 713, 1062, 1063, 1443, 1619] полно­стью объясняет тот факт, что локальные нарушения кинетики стенки сердца (Segmental (or Regional) Wall Motion Abnormalities — S(R)WMA, [892]) проявили высокую чувстви­тельность и специфичность в качестве маркера интраоперационной ишемии, оказавшись наиболее информативным и динамичным из всех известных тестов [1404, 1575]. Гемодинамические сдвиги, включая данные инвазивного мониторинга, далеко не всегда сопут­ствуют появлению SWMA (28% случаев — [933], 60% — [959]), "ишемическая" динамика ЭКГ также ненадежно коррелирует с их появлением (25% — [1404]), тогда как сами SWMA, напротив, явились наиболее постоянным предвестником периоперационного ИМ [885, 932, 1227, 1404]. Существует, однако, и мнение об отсутствии преимуществ TEE перед ЭКГ-мониторингом в обнаружении периоперационной ишемии [549]. (Пожалуй, наиболее необычную точку зрения на интраоперационный мониторинг ишемии высказал J.E. Connolly (1985): преимуществом операций под местной или регионарной анестезией автор считает сохранение у пациента способности предупредить анестезиолога о появ­лении ангинозных болей [444]).

В плане мониторинга глобальной функции ЛЖ преимуществом TEE считают высокую эффектив­ность оценки преднагрузки по конечно-диастолическому объему в случаях нарушений комплайенса желудочка, когда ДЗЛА перестает адекватно отражать ситуацию [1241, 1529, 1555]; сам же принцип оценки фазовых объемов при этом полностью сохраняется [1183]. Распрост­раняется и измерение МОК с помощью допплеровской TEE [609, 994]. Известны также допплеровские методики измерения МОК с помощью датчиков, вмонтирован­ных в эндотрахеальные трубки [214, 1180, 1651] и в катетеры Swan-Gonz [722, 1351, 1352, 1353, 1421] (правда, внутрисосудистая допплерография ЛА использовалась в СССР и до изобоетения баллонного катетера [42]). Транстрахеальная допплерография [213, 717], впрочем, вызвала нарекания своей непрактичностью [611, 717, 1389]. Одним из новейших внедрений стал автоматизированный мониторинг МОК с помощью цветной допплерографии (АСОМ) [776, 1533, 1640].

Наконец, в последние годы появились публикации об использовании для расчета МОК дон­ных магнитно-резонансной [1125] и электронно-пучковой [639] томографии сердца; оче­видно, однако, что такие подходы неприменимы во время операции даже в исследователь­ских целях.

 


Дата добавления: 2015-11-02 | Просмотры: 382 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)