АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Списки смежности

Прочитайте:
  1. VII. Тюремные списки
  2. Матрица смежности
  3. Матрица смежности неориентированного графа.
  4. Матрицы смежности
  5. Матрицы смежности и инцидентности
  6. Понятия смежности, инцидентности, степени
  7. При перемножении матрицы смежности R саму на себя
  8. Свойства матрицы смежности неориентированного графа.
  9. Свойства матрицы смежности ориентированного графа.

Данный способ представления графов в значительной степени лишен избыточности, присущей табличным представлениям.

Пусть G = (V, U) - некоторый граф, для которого

V = { v 1,..., v n} и U = { u 1,..., u k}.

Образуем два массива, которые обозначим как A и B.

Массив A состоит из n элементов, по одному для каждой вершины графа, а B - столько элементов, сколько существует концов различных ребер в G.

При построении списков смежности для каждой вершины графа сформируем список вершин, в которые ведут ребра, выходящие из выбранной вершины. То есть элементы списков содержат концы всех ребер, выходящих из соответствующих вершин.

Для графа, изображенного на рис. 5.3., такие списки имеют вид:

Вершина Список
a b c d e f L(a) = f c b L(b) = d L(c) = e L(d) = d b f L(e) = L(f) = d

Здесь список L (e) является пустым.

Элементы списков L (v 1)- L (v n) последовательно записываются в массив B.

В первый, второй и последующие элементы массива A помещаются значения номеров элементов в B, которые являются в массиве B началами списков L (v 1), L (v 2) и т.д.

Если при этом некоторый список L (vi) оказывается пустым, значение ссылки в элементе A (i) полагается равным 0. Такое представление графов является полным, поскольку в нем элементами массива A представлены все вершины, а массив B представляет все ребра графа. Множество ребер, выходящих из произвольной вершины vi представлено своими концами в части массива B, начинающейся с элемента A (i) и заканчивающейся либо в элементе A (j) 1, где j = min t (t > i & A (t) ¹ 0), либо в последнем элементе массива B.

Для рассматриваемого графа массивы A и B имеют вид:

A 1 4 5 6 0 9

 

 


Дата добавления: 2015-09-27 | Просмотры: 632 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)