АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Пара сил

 

 

Пару сил в механике рассматривают как одно из основных понятий, наряду с понятием силы.

Пара силсистема двух параллельных, противоположно направленных и равных по модулю сил, не лежащих на одной прямой.

Плоскость действия пары силплоскость, в которой находятся линии действия сил.

Плечо пары силкратчайшее расстояние (длина перпендикуляра) между линиями действия сил, составляющих пару сил.

 

На рис. 1.34 изображена пара сил, плоскость действия которой лежит в плоскости OXY системы отсчёта OXY.

Силы F 1, F 2 образуют пару сил. F1 = F2; F 1 = – F 2. Однако силы пары не уравновешиваются, так как они направлены не по одной прямой. Пара сил стремится произвести вращение тела, к которому она приложена. Действие пары сил на тело характеризуется её моментом.

 
 

Для количественной характеристики действия пары сил на тело и указания направления, в котором пара сил стремится вращать тело, вводится понятие алгебраического момента пары сил.

Алгебраический момент пары силвеличина, равная взятому с соответствующим знаком произведению модуля одной из сил на её плечо.

 

M = ± F1·h = ± F2·h.

Алгебраический момент пары сил считают положительным, если пара сил стремится повернуть тело против вращения часовой стрелки, и отрицательным, если в сторону вращения часовой стрелки. В системе СИ момент пары сил измеряется в Н·м.

 
 

На рис. 1. 35 изображена пара сил (F 1, F 2), линии действия которых лежат в плоскости OXY.

Момент пары силвекторная мера механического действия пары сил, равная моменту одной из сил пары относительно точки приложения другой силы.

 

Момент пары сил изображается вектором М. Вектор момента М пары сил (F 1, F 2) направлен перпендикулярно к плоскости действия пары сил в сторону, откуда видно пару сил, стремящуюся вращать плоскость её действия в сторону, противоположную вращению часовой стрелки. Согласно определению (см. рис. 1.35), M ^ j, M ^ i, M = F1×h = F2·h. Таким образом, пара сил полностью характеризуется её моментом M.

 

Теорема. Пары сил, лежащие в одной плоскости, эквивалентны, если их алгебраические моменты численно равны и одинаковы по знаку.

 

Доказательство этой теоремы несложно и здесь оно не приводится.

Следствия из теоремы:

1.Пару сил, не изменяя её действия на тело, можно как угодно поворачивать и переносить в любое место плоскости её действия.

2.У пары сил можно изменять плечо и модуль силы, сохраняя при этом алгебраический момент пары и плоскость действия.

 


Суть теоремы и её следствий иллюстрируется рис. 1.36, на котором приведены пары сил с эквивалентными алгебраическими и векторными моментами. Плоскости действия пар сил совпадают с плоскостью YOZ.

 

Теорема. Пары сил в пространстве эквивалентны, если их моменты геометрически равны.

 

Доказательство этой теоремы также достаточно просто и здесь не приведено.

Из теорем о парах сил следует вывод: не изменяя действия пары сил на тело, пару сил можно переносить в любую плоскость, параллельную плоскости её действия, а также изменять её силу и плечо, сохраняя неизменными модуль и направление её момента.

Таким образом, вектор момента пары сил можно переносить в любую точку, то есть момент пары сил является свободным вектором.

Вектор момента пары сил определяет три элемента: положение плоскости действия пары; направление вращения; числовое значение (модуль) момента.

 

Отметим аналогию: если точку приложения вектора силы можно помещать где угодно на линии действия этой силы (скользящий вектор), то векторный момент пары сил можно приложить в любой точке тела (свободный вектор).

 

 


Дата добавления: 2015-09-27 | Просмотры: 558 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)