Импеданс биологических тканей.
Биологические ткани, в том числе ткани тела человека, способны проводить электрический ток. Основными носителями заряда в них являются ионы.
Наибольшей удельной электропроводимостью (g), то есть наименьшим удельным сопротивлением (r), обладают ярко выраженные электролиты - спинномозговая жидкость
(g» 0,018 Ом-1× см-1) и кровь (g» 0,006 Ом-1× см-1). Жировая, костная ткани, а также сухая кожа, имеют очень малую электропроводность (соответственно g» 0,0007 Ом-1× см-1; 10-9 Ом-1× см-1; 10-7 Ом-1× см-1).
2.1.Рассмотрим простейшую схему измерения сопротивления какого-либо органа или участка тела О (рис. 1).
Если I - сила тока через участок О, измеряемая миллиамперметром тА; U - напряжение между электродами Э-Э, измеряемое вольтметром V, то .
Сопротивление R должно изменяться в такт с сердечными сокращениями, поскольку во время них происходят изменения кровенаполнения органа.
Однако практически эти изменения так малы (десятые доли Ом и меньше), что не могут быть надежно зарегистрированы на фоне большого общего сопротивления участка О(обусловленного большим сопротивлением кожи, межтканевых границ раздела, переходным сопротивлением кожа-электрод и др.). Кроме того, истинное сопротивление участка тела на постоянном токе вообще трудно зарегистрировать из-за возникающей поляризации тканей и появления дополнительных зарядов на электродах.
По этим причинам в медицинской реографии не используется постоянный ток, а вместо него применяется переменный ток большой частоты (порядка 100 кГц).
2.2.Рассмотрим схему при которой на электроды Э-Э (рис. 2) подается переменное напряжение
(1)
в цепи исследуемого объекта О протекает переменный ток, изменяющийся по закону
, (2)
- циклическая частота; - частота переменного тока; - сдвиг по фазе между током и напряжением.
Величина
|
| (3)
| называется, как известно, полным сопротивлением или импедансом объекта и зависит как от свойств самого объекта (электрического сопротивления R, емкости С и индуктивности L объекта), так и от частоты переменного тока.
В тканях тела человека структур, обладающих индуктивными свойствами, не обнаружено. Однако клеточные мембраны, а также границы раздела между различными тканями в определенном смысле подобны конденсаторам (при прохождении тока в них возникает двойной электрический слой зарядов ), поэтому любой участок тела обладает более или менее значительной емкостью С. Так как емкостное сопротивление уменьшается при увеличении частоты переменного тока по закону
| ,
| (4)
| то можно ожидать, что и полное сопротивление (импеданс) участка тела также будет убывать с частотой.
Действительно, характерная зависимость импеданса живой ткани Z от частоты переменного тока n имеет вид, представленный на рис. 3.
При малых частотахn (до 104 Гц) импеданс велик и примерно равен активному сопротивлению R ткани для постоянного тока. При больших частотах Z уменьшается, достигая n ~108 Гц некоторого минимального значения R'. Такая зависимость импеданса от частоты может быть приближенно моделирована электрической схемой, представленной на рис. 4.
Действительно, при малых частотах и Z» R (весь ток идет через верхнее плечо схемы), при больших частотах и (параллельное соединение сопротивлений).
В медицинской реографии используются частоты переменного тока порядка 100 кГц. При столь больших частотах общий импеданс исследуемого органа или участка тела уменьшается и значительно большей степени зависит от кровенаполнения органа. Поэтому относительные изменения импеданса во время сердечных сокращений становятся большими, и их регистрация значительно облегчается. Причем эти изменения практически определяются лишь изменением активной составляющей R полного импеданса исследуемого органа, так как емкостная составляющая на используемых частотах при изменении кровенаполнения изменяется совершенно незначительно.
Перечислим основные факторы, определяющие вид реограммы органа:
б) скорость кровотока в органе (при увеличении скорости течения крови ее удельное сопротивление уменьшается);
в) плотность и химический состав крови;
г) толщина и упругость (эластичность) стенок кровеносных сосудов;
д) геометрия органа.
Состояние кожи, поверхностных слоев и соединительной ткани при правильной методике не должно оказывать существенного влияния на вид реограммы.
Другим важным преимуществом переменного тока является то, что на больших частотах его раздражающее действие уменьшается. А именно: величина плотности порогового тока *) в диапазоне частот 50 - 300 кГц увеличивается прямо пропорционально частоте тока n. Так, на частоте реографии n ~ 100 кГц - величина порядка 1 т А/см2, тогда как во время реографического обследования плотность тока обычно не превышает 0,2 т а/см2 (для этого электроды должны иметь площадь не менее 5 см2 каждый!).
Такой ток, как правило, не ощущается пациентом, а реографическое обследование является абсолютно безвредным и может повторяться многократно.
Дата добавления: 2015-09-27 | Просмотры: 2365 | Нарушение авторских прав
|