АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Популяционная генетика
Делить аллели генов на дикие и мутантные, как мы это делали, знакомясь с основами генетики, не совсем правильно, и такое деление может привести к неправильному представлению об эволюции. Исследования природных популяций показывают, что не у всех членов популяции общий генотип, который мы условно называем диким. На самом деле, во многих популяциях наблюдается значительное генетическое разнообразие. Добржанский с коллегами провели исследования диких дрозофил на юго-западе США и обнаружили, что среди них бывают носители нескольких инверсионных вариантов каждой из хромосом. (Инверсия — это поворот одного из участков хромосомы.) В слюнных железах плодовых мушек бывают гигантские хромосомы с четким рисунком черных и белых полос, которые видны под микроскопом. Таким образом легко сравнивать хромосомы разных индивидов и определять, насколько они близки друг другу. Основное понятие популяционной генетики — частота аллеля, то есть доля определенного вида гена или хромосомы в популяции. Предположим, например (воспользовавшись обозначениями Добржанского), что 37% мушек в определенной популяции имеют вторую хромосому со «стандартной» последовательностью генов, 16% имеют инверсию «Arrowhead» и 47% — инверсию «Chiricahua». В таком случае частоты этих форм будут соответственно равны 0,37, 0,16 и 0,47. Добржанский с коллегами составил карты частот различных инверсий по всему региону и показал, что частота каждой инверсии определенным образом меняется от Калифорнии на восток и на север до Мексики. Предполагается, что некоторые генные последовательности дают их обладателям некоторые преимущества в том или ином географическом регионе. В других исследованиях получены приблизительно те же результаты. Многие гены и хромосомы существуют в разных аллельных формах и сохраняются в популяции со значительной частотой, которая, вероятно, может регулярно изменяться (например, в зависимости от сезона). Такая вариативность — богатый источник эволюции.
Разнообразие форм генов поддерживается за счет мутаций, которые с низкой частотой происходят в популяции постоянно. Некоторые изменения генотипа оказываются полезными, поэтому индивиды с генетическими изменениями получают больше шансов оставить потомство. Со временем процент индивидов с полезной мутацией увеличивается. Естественный отбор и предполагает такое репродуктивное преимущество некоторых особей. Каждый генотип имеет свою степень приспособленности, измеряемую в соответствии с частотой репродукции. Сказать, что у определенного генотипа высокая приспособленность, означает, что особи с таким генотипом имеют больше возможностей передать копии своих генов потомству.
Для образования нового вида или более крупной таксономической единицы, такой как род, изменения должны затронуть многие гены. Предположим, что в каком-то виде происходят адаптивные перемены, соответствующие изменениям в генах: геном АА ВВ mm QQ stst становится аа bb ММ qq StSt. Для этого нужны мутации А — а, В — b, т — М, Q — q и st — St. Они скорее всего произойдут независимо друг от друга, в разное время и у разных индивидов, а конечный генотип образуется посредством рекомбинаций. Можно представить себе, как мутации удлиняют и укорачивают конечности позвоночных, делают их кости более тонкими или более толстыми и постепенно создают тот облик животного, к которому мы привыкли. Некоторые исследователи смоделировали отбор по определенному генотипу в лабораторных условиях.
Популяционная генетика описывает эти процессы статистическими методами. Начнем с модели одного гена. Предположим, что в популяции имеются аллели A и a одного и того же гена, и что частота А равна 0,6p, а частота а — 0,4q. (Заметьте, что в такой простой модели р + q = 1, потому что все аллели в популяции принадлежат либо к типу А, либо к типу а.) Можно определить частоты аллелей, подсчитав количество их носителей, как гомозигот, так и гетерозигот. Каждая гомозигота переносит две копии одного и того же аллеля, а гетерозигота — по одной копии каждого.
Каковы будут частоты разных генотипов в этой популяции? Процессы мутации и отбора действуют медленно, на протяжении нескольких поколений, и для начала, предположим, что они вообще не действуют. Предположим также, что популяция достаточно велика, чтобы к ней были применимы принципы вероятности, и что индивиды спариваются случайным образом. Это значит, что ни самцы, ни самки специально не выбирают своих партнеров (например, партнер АА не предпочитает спариваться с партнерами того же генотипа). Вспомним теперь, что гаметы содержат один аллель либо А, либо а, поэтому гаметы А и а будут встречаться с теми же частотами, что и аллели, то есть р и q. Для наглядности можно представить аллели А в виде красных шариков, а аллели а — в виде синих, а весь генофонд популяции — в виде мешка с этими шариками. Для получения нового индивида мы не глядя двумя руками вынимаем из этого мешка два шарика. Вероятность того, что они оба красные равна р х р = р2, что они оба синие — q x q = q2. Иногда случается, что левой рукой мы вынимаем красный шарик, а правой синий (частота p х q = pq), а иногда наоборот: левой — синий, а правой — красный (частота q х р = qp). Отсюда получаем следующие частоты генотипов: р2 для АА, 2pq для Аа; q2 для аа.
Это приблизительная формула, называемая формулой Xapdu—Вайнберга, лежит в основе популяционной генетики. Более сложные ее варианты учитывают частоту мутаций и селективную приспособленность различных аллелей. С ее помощью можно также оценить распространенность в человеческой популяции наследственного заболевания, вызываемого одним аллелем. Возьмем для примера такое аутосомное рецессивное заболевание, как фенилкетонурия, которое в популяции встречается с частотой q2. Если в определенной популяции от фенилке-тонурии страдает один человек на 10 тыс., то q2 = '/10000- Отсюда следует, что q должно быть равно квадратному корню из '/10000, то есть '/100. Так как р + q = I, то р = 99/100. Тогда согласно формуле Харди—Вайнберга частота гетерозиготных носителей 2pq = 2 х 99/100 х 1/100= 1/50 (приблизительно). Эти подсчеты показывают, что гетерозиготные носители встречаются гораздо чаще (приблизительно один на 50 человек), чем гомозиготные больные. Знание частоты гетерозигот очень помогает при генетическом консультировании. Зная данные о распространении гетерозигот, можно также постараться устранить методом отбора рецессивный аллель из популяции, как будет описано далее.
Дата добавления: 2015-10-19 | Просмотры: 400 | Нарушение авторских прав
|