Молекулярные основы наследственности
Ген как элементарная единица наследственной информации выполняет определенные функции и обладает определенными свойствами.
Функции генов:
· хранение наследственной информации;
· управление биосинтезом белка и других веществ в клетке;
· контроль за развитием и старением клетки.
Свойства генов:
· дискретность: один ген контролирует один признак;
· специфичность: каждый ген отвечает строго за свой признак;
· стабильность структуры: гены передаются из поколения в поколение не изменяясь;
· дозированность действия: один ген определяет одну дозу фенотипического проявления признака;
· способность к мутированию (изменению структуры);
· способность к репликации (самоудвоению);
· способность к рекомбинации (переходу из одной гомологичной хромосомы в другую).
Функциональная классификация генов
Все гены делятся на три группы:
· cтруктурные – контролируют развитие признаков путем синтеза соответствующих ферментов;
· регуляторные – управляют деятельностью структурных генов;
· модуляторные – смещают процесс проявления признаков в сторону его усиления или ослабления, вплоть до полной блокировки.
Особенности строения генов
У прокариотических и эукариотических клеток
Клетки в природе делятся на прокариотические и эукариотические. У прокариот ген имеет непрерывную структуру, т.е. представляет собой часть молекулы ДНК.
У эукариот ген состоит из чередующихся участков: экзонов и интронов. Экзон – информативный участок, интрон – неинформативный. Число интронов у разных генов неодинаково (от 1 до 50).
Экспрессия (проявление действия) гена в процессе синтеза белка
Весь процесс синтеза белка условно делится на три этапа: транскрипция,
Процессинг и трансляция.
Транскрипция
Транскрипция – процесс переписывания информации с молекулы ДНК на и-РНК. Протекает в ядре.
Молекула ДНК состоит из двух спирально закрученных нитей. Каждая нить представлена последовательностью нуклеотидов, а каждый нуклеотид состоит из углевода (пентозы), азотистого основания и остатка фосфорной кислоты.
Каждая нить молекулы ДНК имеет два конца – гидроксильный (3¢) и фосфатный (5¢). Нити расположены по отношению друг к другу антипараллельно.
Синтез и-РНК в клетке всегда идет от фосфатного конца к гидроксильному. Поэтому матрицей для транскрипции служит одна нить ДНК, обращенная к синтезирующему ферменту своим гидроксильным концом; она называется кодогенной, или информативной (а другая нить, соответственно, некодогенной, или неинформативной).
Транскрипция делится на три периода:
· инициация,
· элонгация,
· терминация.
Инициация –
начало синтеза и-РНК.
Синтез и-РНК осуществляется при помощи фермента – РНК-полимеразы. У прокариот имеется только один вид этого фермента, у эукариот – пять видов. Сущность инициации состоит в том, что фермент РНК-полимераза отыскивает в молекуле ДНК стартовую область – промотор и прикрепляется к ней. Это происходит в течение 15-20 секунд.
Элонгация –
синтез молекулы и-РНК из свободных нуклеотидов по принципу комплементарности: аденину соответствует урацил, а цитозину – гуанин. За 1 секунду выстраивается около 50 нуклеотидов. Синтез и-РНК одновременно протекает в нескольких участках молекулы ДНК. Образующиеся фрагменты называются транскриптоны. В последующем они объединяются.
Терминация –
завершение синтеза и-РНК.
Происходит тогда, когда РНК-полимераза встречается с особым участком молекулы ДНК – терминатором.
У прокариот в роли терминатора выступают участки молекулы ДНК, имеющие «симметричное» строение – они одинаково читаются в обе стороны от центра. Такие участки называются палиндромами. Фрагмент и-РНК, синтезированный на таком участке, в последующем складывается вдвое в виде шпильки. Образование "шпильки" является сигналом для завершения синтеза и-РНК. У эукариот "шпильки" не образуются. Вероятно, терминация у них протекает иначе.
Процессинг
Процессинг включает целый ряд преобразований и-РНК, необходимых для ее нормального функционирования:
1. Образование колпачка (КЭПа) на фосфатном конце.
Колпачок – это трифосфонуклеозид, содержащий гуанин. С помощью колпачка и-РНК отыскивает в цитоплазме малую субъединицу рибосомы.
2. Метилирование азотистых оснований.
3. Удаление части нуклеотидов на гидроксильном конце.
4. Присоединение на гидроксильном конце poli-А (100-200 остатков адениловой кислоты). Это образование выполняет стабилизирующую функцию и обеспечивает транспорт и-РНК из ядра в цитоплазму.
5. Сплайсинг – процесс удаления интронов и сшивания экзонов.
Ядерная и-РНК является точной матрицей молекулы ДНК. Она содержит как экзоны, так и интроны, поэтому называется незрелой, или юной. После прохождения сплайсинга она становится зрелой.
Сплайсинг присущ только эукариотам. Возможен также альтернативный сплайсинг: из одной и той же ядерной (незрелой) и-РНК вырезаются разные участки, в результате чего образуются разные зрелые и-РНК.
Зрелая и-РНК имеет следующий вид:
5¢ 3¢
Дата добавления: 2015-12-15 | Просмотры: 522 | Нарушение авторских прав
|