АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Полигибридное скрещивание.

Прочитайте:
  1. Анализирующее скрещивание.
  2. АНАЛИЗИРУЮЩЕЕ СКРЕЩИВАНИЕ. ПРАВИЛО ЧИСТОТЫ ГАМЕТ
  3. ВОПРОС №2: МОНОГИБРИДНОЕ СКРЕЩИВАНИЕ. 1-ЫЙ ЗАКОН МЕНДЕЛЯ. ОСОБЕННОСТИ МЕТОДИЧЕСКИХ ПОДХОДОВ В ЭКСПЕРЕМЕНТАХ МЕНДЕЛЯ. ТИПЫ АЛЛЕЛЬНОГО ВЗАИМОДЕЙСТВИЯ И ИХ ХАР-КА.
  4. Дигибридное и полигибридное скрещивания. Закон независимого наследования генов.
  5. Закономерности наследования при дигибридном скрещивании. 3-1 закон Менделя, его цитологические основы. Полигибридное скрещивание.
  6. Моногибридное скрещивание. Закон единообразия гибридов первого поколения. Доминантность и рецессивност. Кодоминантность. Аллельное состояние гена.
  7. Тема 1. ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ НА ОРГАНИЗМЕННОМ УРОВНЕ. МОНО - И ДИГИБРИДНОЕ СКРЕЩИВАНИЕ. ПРАВИЛА ВЕРОЯТНОСТИ

Положение о независимом наследовании разных пар аллелей и признаков было подтверждено Менделем при изучении насле­дования трёх пар признаков у гороха. Он скрещивал сорт расте­ния с круглыми семенами (А), желтыми семядолями (В) и серо-коричневой кожурой семян (Qc сортом, форма семян которого морщинистая (а), семядоли зеленые (Ь), семенная кожура белая (с). Материнское растение имело генотип ААВВСС, отцовское — ааЪЪсс. Поскольку родители гомозиготны по всем трем парам признаков, у них образуется по одному типу гамет: ABC и аЪс. Гибриды Fi будут иметь генотип АаВЪСс (тригетерозигота). При тригетерозиготности три пары разных аллелей находятся в трех разных парах гомологичных хромосом. В результате независимо­го сочетания хромосом (значит, и аллелей) из разных пар у гибрида Fi образуется восемь сортов гамет: ABC, АВс, АЪС, аВС, Мс, аВс, аЬс, аЪс. При самоопылении в результате случайного сочетания гамет в F2 получается 64 комбинации, включающие 8

фенотипов.

Мендель установил, что расщепление по фенотипу при три-гибридном скрещивании представляет собой сочетание трех не­зависимых моногибридных расщеплений. Чем больше призна­ков, по которым отличаются взятые для скрещивания особи, тем сложнее расщепление и сильнее возрастает комбинативная из­менчивость. Число возможных комбинаций гамет и число клас-Для того чтобы понять, почему в пределах популяции каждого вида животных наблюдается такое большое разнообразие в типе телосложения, размерах, продуктивности и т. д., можно произ­вести простые расчеты при помощи формулы 2я. Цифра 2 пока­зывает, что набор хромосом диплоидный, и — гаплоидное число хромосом у определенного вида животных. Если отец и мать гетерозиготны только по одной какой-то паре аллельных генов, расположенных в каждой паре хромосом, то при полном доми­нировании каждого из признаков число определяемых этими аллелями возможных различных фенотипов у их потомков будет: у крупного рогатого скота 230, или более миллиарда, у свиней 219, или более 500 тыс., и т. д. Но животные, очевидно, могут отличаться друг от друга и по большему числу пар аллелей. Поэтому потенциальные возможности комбинативной изменчи­вости огромны, и становится понятным, почему в природе не встречается абсолютно похожих особей, за исключением одно­яйцевых близнецов.

Огромной заслугой Менделя является то, что в процессе своей работы он не только установил закономерности наследова-ния признаков, но и открыл основные принципы (законы) наслед­ственности:

1) дискретной (генной) наследственной детерминации признаков. Этот принцип лежит в основе теории гена;

2) относительного постоянства наследственной единицы (гена);

3) отельного состояния гена (доминантность и рецессивность).


Дата добавления: 2015-12-16 | Просмотры: 556 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)