АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Нейромедиаторы, их строение и функции, образование и метаболизм. Классификация нейромедиаторов.

Прочитайте:
  1. A – и b-адреномиметические средства. Классификация. Фармакологические эффекты. Применение. Побочные эффекты.
  2. A-Аминокислоты, строение, номенклатура, изомерия
  3. I. Классификация.
  4. II. Классификация клиники детской челюстно-лицевой хирургии Белорусского государственного медицинского университета.
  5. LEA белки. Классификация, выполняемые функции.
  6. VIII) Классификация желез внутренней секреции
  7. Аборты. Классификация. Диагностика. Лечение. Профилактика.
  8. АМЕНОРЕЯ. ЭТИОЛОГИЯ, КЛАССИФИКАЦИЯ, КЛИНИКА, ДИАГНОСТИКА, ЛЕЧЕНИЕ.
  9. Анатомическое строение локтевого сустава (видео атлас)
  10. Анатомия изучает строение животных в 3 основных аспектах.

Нейромедиа́торы (нейротрансмиттеры, посредники) — биологически активные химические вещества, посредством которых осуществляется передача электрического импульса с нервной клетки через синаптическое пространство между нейронами. Нервный импульс, поступающий в пресинаптическое окончание, вызывает освобождение в синаптическую щель медиатора. Молекулы медиаторов реагируют со специфическими рецепторными белками клеточной мембраны, инициируя цепь биохимических реакций, вызывающих изменение трансмембранного тока ионов, что приводит к деполяризации мембраны и возникновению потенциала действия. Нейромедиаторы являются, как и гормоны, первичными мессенджерами, но их высвобождение и механизм действия в химических синапсах сильно отличается от такового гормонов. В пресинаптической клетке везикулы, содержащие нейромедиатор, высвобождают его локально в очень маленький объём синаптической щели. Высвобожденный нейромедиатор затем диффундирует через щель и связывается с рецепторами на постсинаптической мембране. Диффузия является медленным процессом, но пересечение такой короткой дистанции, которая разделяет пре- и постсинаптические мембраны (0,1 мкм или меньше), происходит достаточно быстро и позволяет осуществлять быструю передачу сигнала между нейронами или между нейроном и мышцей.Недостаток какого-либо из нейромедиаторов может вызывать разнообразные нарушения, например, различные виды депрессии. Также считается, что формирование зависимости от наркотиков и табака связано с тем, что при употреблении этих веществ задействуются механизмы производства нейромедиатора серотонина, а также других нейромедиаторов, блокирующие (вытесняющие) аналогичные естественные механизмы.

Аминокислоты (и их производные). К ним относят таурин, норадреналин, ДОФАминГАМК, глицин, ацетилхолин, гомоцистеин и некоторые другие (адреналин, серотонин, гистамин, серотонин).

Таурин. Таурин образуется из аминокислоты цистеина. Сначала происходит окисление серы в SH-группе до остатка серной кислоты (процесс идет в несколько стадий), а затем происходит декарбоксилирование. Таурин - это необычная кислота, в которой нет карбоксильной группы, а имеется остаток серной кислоты.

Таурин принимает участие в проведении нервного импульса в процессе зрительного восприятия.

Ацетилхолин. Для синтеза холина требуются аминокислоты серин, метионин. Этаноламин может быть использован и в готовом виде. Но, как правило, из крови в нервную ткань поступает уже готовый холин. Второй же предшественник этого нейромедиатора - Ацетил-КоА, синтезируется в нервных окончаниях.

Продукт этой реакции ацетилхолин участвует в синаптической передаче нервного импульса. Он накапливается в синаптических пузырьках, образуя комплексы с отрицательно заряженным белком везикулином. Передача возбуждения с одной клетки на другую осуществляется с помощью специального синаптического механизма.

Синапс – это функциональный контакт специализированных участков плазматических мембран двух возбудимых клеток. Синапс состоит из пресинаптической мембраны, синаптической щели и постинаптической мембраны. Мембраны клеток в месте контакта имеют утолщения в виде бляшек – нервных окончаний. Нервный импульс, достигший нервного окончания, не в состоянии преодолеть возникшее перед ним препятствие - синаптическую щель. После этого электрический сигнал преобразуется в химический. Пресинаптическая мембрана содержит специальные канальные белки, подобные белкам, формирующим натриевый канал в мембране аксона. Они тоже реагируют на мембранный потенциал, изменяя свою конформацию и формируют канал. В результате ионы Са2+ проходят через пресинаптическую мембрану по градиенту концентраций в нервное окончание. Градиент концентраций Са2+ создается работой Са2+-зависимой.

АТФазы – кальциевым насосом. Повышение концентрации Са2+ внутри нервного окончания вызывает слияние 200-300 имеющихся там везикул, заполненных ацетилхолином, с плазматической мембраной. Далее ацетилхолин секретируется в синаптическую щель путем экзоцитоза, и присоединяется к рецепторным белкам, расположенным на поверхности постсинаптической мембраны.

Ацетилхолиновый рецептор представляет собой трансмембранный олигомерный гликопротеиновый комплекс, состоящий из 6 субъединиц: 2-бета, 1-гамма и 1-дельта. Плотность расположения белков-рецепторов в постсинаптической мембране очень велика - около 20000 молекул на 1 мкм2. Пространственная структура рецептора строго сооответствует конформации медиатора.

При взаимодействии с ацетилхолином белок-рецептор так изменяет свою конформацию, что внутри него формируется натриевый канал. Катионная селективность канала обеспечивается тем, что ворота канала сформированы отрицательно заряженными аминокислотами. Таким образом, повышается проницаемость постсинаптической мембраны для натрия и возникает новый импульс (или сокращение мышечного волокна). Деполяризация постсинаптической мембраны вызывает диссоциацию комплекса «ацетилхолин-белок-рецептор» и ацетилхолин освобождается в синаптическую щель. Как только ацетилхолин оказывается в синаптической щели, он за 40 мкс подвергается быстрому гидролизу под действием фермента ацетилхолинэстеразы.

Во время гидролиза ацетилхолина образуется промежуточный фермент-субстратный комплекс, в котором ацетилхолин связан с активным центром фермента через серин.

Необратимое ингибирование холинэстеразы вызывает смерть. Ингибиторами холинэстеразы являются фосфорорганические соединения (хлорофос, дихлофос, табун, зарин, зоман, бинарные яды). Эти вещества связываются ковалентно с серином в активном центре фермента. Некоторые из них синтезированы в качестве инсектицидов, а некоторые – в качестве боевых отравляющих веществ (нервно-паралитические яды). Смерть наступает в результате остановки дыхания.

Обратимые ингибиторы холинэстеразы используются как лечебные препараты. Например, при лечении глаукомы и атонии кишечника.

Катехоламины: норадреналин и дофамин. Адренэргические синапсы встречаются в постганглионарных волокнах, в волокнах симпатической нервной системы, в различных отделах головного мозга. Катехоламины в нервной ткани синтезируются по общему механизму из тирозина. Ключевой фермент синтеза – тирозингидроксилаза, ингибируемая конечными продуктами.

Норадреналин – медиатор в постганглионарных волокнах симпатической и в различных отделах ЦНС.

Дофамин – медиатор проводящих путей, тела нейронов которого расположены в отделе мозга, который отвечает за контроль произвольных движений. Поэтому при нарушении дофаминэргической передачи возникает заболевание паркинсонизм.

Катехоламины, как и ацетилхолин, накапливаются в синаптических пузырьках и тоже выделяется в синаптическую щель при поступлении нервного импульса. Но регуляция в адренэргическом рецепторе происходит иначе. В пресинаптической мембране здесь имеется специальный регуляторный белок - ахромогранин (Мм = 77 кДа), который в ответ на повышение концентрации медиатора в синаптической щели связывает уже выделившийся медиатор и прекращает его дальнейший экзоцитоз. Фермента, разрушающего медиатор, в адренэргических синапсах нет. После передачи импульса молекулы медиатора перекачивается специальной транспортной системой путем активного транспорта с участием АТФ обратно через пресинаптическую мембрану и включается вновь в везикулы. В пресинаптическом нервном окончании излишек медиатора может быть инактивирован моноаминоксидазой, а также катехоламин-О-метилтрансферазой путем метилирования по оксигруппе. Кокаин тормозит активный транспорт катехоламинов.

Передача сигнала в адренэргических синапсах протекает по механизму, известному Вам из лекций по теме «Биохимия гормонов» с участием аденилатциклазной системы. Связывание медиатора с постсинаптическим рецептором почти мгновенно вызывает повышение концентрации ц-АМФ, что приводит к быстрому фосфорилированию белков постсинаптической мембраны. В результате изменяется генерация нервных импульсов постсинаптической мембраной (тормозится). В некторых случаях непосредственной причиной этого является повышение проницаемости постсинаптической мембраны для калия, либо снижением проводимости для натрия (эти события приводят к гиперполяризации).

ГАМК – тормозной медиатор. Повышает проницаемость постсинаптических мембран для ионов калия. Это ведет к изменению мембранного потенциала.

Глицин – тормозной медиатор, по вызываемым эффектам подобен гамк.

Пептиды. Имеют в своем составе от трех до нескольких десятков аминокислотных остатков. Функционируют только в высших отделах нервной системы.

Эти пептиды, как и катехоламины, выполняют функцию не только нейромедиаторов, но и гормонов. Передают информацию от клетки к клетке по системе циркуляции.

Сюда относятся:

1. нейрогипофизарные гормоны (вазопрессин, либерины, статины). Эти вещества одновременно и гормоны и медиаторы;

2. гастроинтестинальные пептиды (гастрин, холецистокинин). Гастрин вызывает чувство голода, холецистокинин вызывает чувство насыщения, а также стимулирует сокращение желчного пузыря и функцию поджелудочной железы;

3. опиатоподобные пептиды (или пептиды обезболивания). Образуются путем реакций ограниченного протеолиза белка-предшественника проопиокортина. Взаимодействуют с теми же рецепторами, что и опиаты (например, морфин), тем самым имитируют их действие. Общее название - эндорфины - вызывают обезболивание. Они легко разрушаются протеиназами, поэтому их фармакологический эффект незначителен;

4. пептиды сна. Их молекулярная природа не установлена. Известно лишь, что их введение животным вызывает сон;

5. пептиды памяти (скотофобин). Накапливается в мозге крыс при тренировке на избегание темноты;

6. пептиды - компоненты ренин-ангиотензиновой системы. Показано, что введение ангиотензина-II в центр жажды головного мозга вызывает появление этого ощущения и стимулирует секрецию антидиуретического гормона.

 

16. Нейроглия. Источники онтогенетического развития нейроглии. Нейроглия (от нейро... и греч. gl?a — клей), глия, клетки в мозге, своими телами и отростками заполняющие пространства между нервными клетками — нейронами — и мозговыми капиллярами. Каждый нейрон окружен несколькими клетками Н., которая равномерно распределена по всему мозгу и составляет около 40% его объёма. Клетки Н. — число их в центральной нервной системе (ЦНС) млекопитающих около 140 млрд. — мельче нейронов в 3—4 раза и отличаются от них по морфологическим и биохимическим признакам. С возрастом количество нейронов в ЦНС уменьшается, а клеток Н. — увеличивается, т.к. последние, в отличие от нейронов, сохраняют способность к делению. Основные функции Н.: создание между кровью и нейронами гемато-энцефалического барьера, необходимого как для защиты нейронов, так и главным образом для регуляции поступления веществ в ЦНС и их выведения в кровь; обеспечение реактивных свойств нервной ткани (образование рубцов после травмы, участие в реакциях воспаления, в образовании опухолей и др.). Различают астроглию, олигоглию, или олигодендроглию, и эпендиму, которые вместе составляют макроглию, а также микроглию, занимающую особое положение среди клеток Н.

 

17. Макроглия. Особенности структуры и функции разных видов макроглии (астроциты и олигодендроциты). Макроглия - клетки в мозге, заполняющие пространства между нервными клетками — нейронами — и окружающими их капиллярами. М. — основная ткань нейроглии, часто с ней отождествляемая; в отличие от микроглии, имеет общее с нейронами происхождение из нервной трубки. Более крупные клетки М., образующие астроглию и эпендиму, участвуют в деятельности гемато-энцефалического барьера, в реакции нервной ткани на повреждения и инфекции. Более мелкие, так называемые сателлитные клетки нейронов (олигодендроглия), участвуют в образовании миелиновых оболочек отростков нервных клеток — аксонов, обеспечивают нейроны питательными веществами, особенно в период усиленной активности мозга. Олигодендроциты - Белое вещество головного и спинного мозга, периферические нервы. Окружает нервные клетки и их аксоны; образует вокруг нервных волокон миелиновую оболочку, играющую роль биологического изолятора, который препятствует распространению возбуждения на соседние нейроны. Не исключено участие в поляризации и метаболизме нервных клеток. Олигодендроциты имеют то же происхождение, что и астроциты. По размерам они меньше, чем астроциты и имеют меньше отростков. Основная масса олигодендроцитов располагается в белом веществе мозга и ответственна за образование миелина. Эти олигодендроциты обладают длинными отростками. Олигодендроциты, расположенные в периферической нервной системе, называются Шванновскими клетками. Те олигодендроциты, которые находятся в сером веществе, располагаются, как правило, вокруг тел нейронов, плотно прилегая к ним. Поэтому их называют клетками-сателлитами. Они характеризуются наличием коротких отростков Астроциты – серое и белое в-во головного и спинного мозга. Обеспечение транспорта веществ из кровеносных капилляров к нервным клеткам; участие в образовании гематоэнцефалического барьера. Происходит из спонгиобластов, развивающихся в клетки, имеющие множество отростков. Длинные извитые отростки астроцитов переплетаются с отростками нейронов. Значительное число отростков астроцитов представляют собой «ножки», плотно прилегающие к капиллярам и покрывающие собой почти всю поверхность сосуда. Астроциты, расположенные в местах концентрации тел нейронов (серое вещество), образуют больше отростков, чем астроциты в белом веществе. Таким образом, астроциты — это клетки, располагающиеся между капиллярами и телами нейронов и осуществляющие транспорт веществ из крови в нейроны и обратно. Кроме того, астроглия связывает с кровеносным руслом спинномозговую жидкость.

 

18.Строение и функции эпендимы. Эпендима – выстилает все внутренние полости в головном и спинном мозге. Выполняет роль барьера между веществом мозга и омывающей его спинномозговой жидкостью; регулирует секрецию и состав спинномозговой жидкости. Эпендима - клетки в мозге животных и человека, выполняющие в центральной нервной системе разграничительную, опорную и секреторную функции; форма нейроглии. Э. дифференцируется из клеток нервной трубки в раннем эмбриогенезе. Клетки Э. (эпендимоциты) выстилают стенки спинномозгового канала и желудочков головного мозга. Их тела вытянуты, на свободном конце — реснички (теряемые во многих отделах мозга после рождения особи), биение которых способствует циркуляции спинномозговой жидкости. От противоположного конца эпендимоцита в мозг отходит длинный, ветвящийся отросток. Э. стенок 3-го желудочка мозга (ее клетки называются таницитами), возможно, осуществляет обмен биологически активными веществами между нейронами прилегающих областей мозга, спинномозговой жидкостью и сосудами воротной системы гипофиза.

 

19. Строение, функции и происхождение микроглии. Микроглиоциты, или микроглия, представляют собой мелкие клетки, рассеянные в центральной нервной системе. При травмах или дегенерации нервной ткани они способны мигрировать к очагу повреждения, где превращаются в крупные макрофаги, поглощающие путем фагоцитоза продукты распада. Таким образом, микроглиоциты препятствуют развитию воспалительных процессов и распространению инфекции в нервной ткани. Микроглия – белое в-во головного и спинного мозга преимущественно около кровеносных сосудов. Выполняет защитную роль, сходную с ролью макрофагов; предотвращает попаданию в нервную систему чужеродных субстанций. Клетки микроглии происходят из мезодермы. Как видно из названия, они отличаются небольшими размерами. Эти клетки могут активно передвигаться и выполнять фагоцитарные функции. Благодаря способности к активной миграции микроглия распределена по всей центральной нервной системе.

 


Дата добавления: 2015-12-15 | Просмотры: 647 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)