АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Функции и свойства гладких мышц

Прочитайте:
  1. F07 Расстройства личности и поведения вследствие болезни, повреждения и дисфункции головного мозга
  2. I. 3. Функции Т-лимфоцитов
  3. II Структура и функции почек.
  4. II этап. Регуляция менструальной функциии и профилактика рецидивов
  5. II. Функции
  6. III. Вегетативные функции НС.
  7. III. Улучшение функции бронхиального дерева
  8. III. Функции
  9. IV. Основные свойства опухоли.
  10. V1:Строение и функции органов и тканей полости рта

 

Электрическая активность. Висцеральные гладкие мышцы ха­рактеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состо­янии постоянного частичного сокращения — тонуса. Тонус гладких мышц отчетливо выражен в сфинктерах полых органов: желчном, мочевом пузырях, в месте перехода желудка в двенадцатиперстную кишку и тонкой кишки в толстую, а также в гладких мышцах мелких артерий и артериол. Мембранный потенциал гладкомышеч­ных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокраща­ется, при увеличении — расслабляется. В периоды состояния отно­сительного покоя величина мембранного потенциала в среднем рав­на — 50 мВ. В клетках висцеральных гладких мышц наблюдаются медленные волнообразные флюктуации мембранного потенциала ве­личиной в несколько милливольт, а также ПД. Величина ПД может варьировать в широких пределах. В гладких мышцах продолжи­тельность ПД 50—250 мс; встречаются ПД различной формы. В не­которых гладких мышцах, например мочеточника, желудка, лим­фатических сосудов, ПД имеют продолжительное плато во время реполяризации, напоминающее плато потенциала в клетках мио­карда. Платообразные ПД обеспечивают поступление в цитоплазму миоцитов значительного количества внеклеточного кальция, участ­вующего в последующем в активации сократительных белков глад­комышечных клеток. Ионная природа ПД гладкой мышцы опреде­ляется особенностями каналов мембраны гладкой мышечной клетки. Основную роль в механизме возникновения ПД играют ионы Са2+. Кальциевые каналы мембраны гладких мышечных клеток пропу­скают не только ионы Са2+, но и другие двухзарядные ионы (Bа 2+, Mg2+), а также Na+. Вход Са2+ в клетку во время ПД необходим для поддержания тонуса и развития сокращения, поэтому блокиро­вание кальциевых каналов мембраны гладких мышц, приводящее к ограничению поступления иона Са2+ в цитоплазму миоцитов внутренних органов и сосудов, широко используется в практической медицине для коррекции моторики пищеварительного тракта и то­нуса сосудов при лечении больных гипертонической болезнью.

 

Автоматия. ПД гладких мышечных клеток имеют авторитмиче­ский (пейсмекерный) характер, подобно потенциалам проводящей системы сердца. Пейсмекерные потенциалы регистрируются в раз­личных участках гладкой мышцы. Это свидетельствует о том, что любые клетки висцеральных гладких мышц способны к самопроиз­вольной автоматической активности. Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.

 

Реакция на растяжение. Уникальной особенностью висцеральной гладкой мышцы является ее реакция на растяжение. В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге — тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления, является основным фактором миогенной саморегуляции тонуса сосудов. На­конец, растяжение мускулатуры матки растущим плодом служит одной из причин начала родовой деятельности.

 

Пластичность. Еще одной важной специфической характеристи­кой гладкой мышцы является изменчивость напряжения без зако­номерной связи с ее длиной. Так, если растянуть висцеральную гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным рас­тяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня. Это свойство называется пластичностью гладкой мышцы. Таким образом, гладкая мышцы более похожа на тягучую пластичную массу, чем на малоподатливую структурированную ткань. Пластичность гладкой мускулатуры способствует нормально­му функционированию внутренних полых органов.

 

Связь возбуждения с сокращением. Изучать соотношения между электрическими и механическими проявлениями в висцеральной гладкой мышце труднее, чем в скелетной или сердечной, так как висцеральная гладкая мышца находится в состоянии непрерывной активности. В условиях относительного покоя можно зарегистриро­вать одиночный ПД. В основе сокращения как скелетной, так и гладкой мышцы лежит скольжение актина по отношению к миозину, где ион Са2+ выполняет триггерную функцию (рис. 2.31).

 

В механизме сокращения гладкой мышцы имеется особенность, отличающая его от механизма сокращения скелетной мышцы. Эта особенность заключается в том, что прежде чем миозин гладкой мышцы сможет проявлять свою АТФазную активность, он должен быть фосфорилирован. Фосфорилирование и дефосфорилирование миозина наблюдается и в скелетной мышце, но в ней процесс фосфорилирования не является обязательным для активации АТФазной активности миозина. Механизм фосфорилирования миозина гладкой мышцы осуществляется следующим образом: ион Са2+ со­единяется с кальмодулином (кальмодулин — рецептивный белок для иона Са2+). Возникающий комплекс активирует фермент — киназу легкой цепи миозина, который в свою очередь катализирует процесс фосфорилирования миозина. Затем происходит скольжение актина по отношению к миозину, составляющее основу сокращения. Отметим, что пусковым моментом для сокращения гладкой мышцы является присоединение иона Са2+ к кальмодулину, в то время как в скелетной и сердечной мышце пусковым моментом является при­соединение Са2+ к тропонину.

 

Химическая чувствительность. Гладкие мышцы обладают высо­кой чувствительностью к различным физиологически активным веще­ствам: адреналину, норадреналину, АХ, гистамину и др. Это обуслов­лено наличием специфических рецепторов мембраны гладкомышеч­ных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенци­ал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдает­ся тот же эффект, что и при возбуждении симпатических нервов.

 

Норадреналин действует на α- и β-адренорецепторы мембраны гладкомышечных клеток. Взаимодействие норадреналина с β-рецеп­торами уменьшает тонус мышцы в результате активации аденилатциклазы и образования циклического АМФ и последующего увели­чения связывания внутриклеточного Са2+. Воздействие норадрена­лина на α-рецепторы тормозит сокращение за счет увеличения выхода ионов Са2+ из мышечных клеток.

 

АХ оказывает на мембранный потенциал и сокращение гладкой мускулатуры кишечника действие, противоположное действию норадреналина. Добавление АХ к препарату гладкой мышцы кишечника уменьшает мембранный потенциал и увеличивает частоту спонтан­ных ПД. В результате увеличивается тонус и возрастает частота ритмических сокращений, т. е. наблюдается тот же эффект, что и при возбуждении парасимпатических нервов. АХ деполяризует мем­брану, увеличивает ее проницаемость для Na+ и Са+.

 

Гладкие мышцы некоторых органов реагируют на различные гормоны. Так, гладкая мускулатура матки у животных в периоды между овуляцией и при удалении яичников относительно невозбу­дима. Во время течки или у животных, лишенных яичников, которым вводился эстроген, возбудимость гладкой мускулатуры возрастает. Прогестерон увеличивает мембранный потенциал еще больше, чем эстроген, но в этом случае электрическая и сократительная актив­ность мускулатуры матки затормаживается.


Дата добавления: 2015-03-04 | Просмотры: 865 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)